Normalized defining polynomial
\( x^{11} - 99 x^{9} - 462 x^{8} + 1584 x^{7} + 22176 x^{6} + 96096 x^{5} + 234432 x^{4} + 354816 x^{3} + 332288 x^{2} + 177408 x - 631310436 \)
Invariants
| Degree: | $11$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[3, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(7413678421661011080149217259776=2^{8}\cdot 3^{16}\cdot 11^{20}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $640.28$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{27} a^{3} + \frac{4}{27} a^{2} + \frac{13}{27} a - \frac{1}{3}$, $\frac{1}{243} a^{4} - \frac{1}{81} a^{3} + \frac{13}{81} a^{2} + \frac{62}{243} a - \frac{8}{27}$, $\frac{1}{2187} a^{5} - \frac{1}{2187} a^{4} + \frac{11}{729} a^{3} - \frac{346}{2187} a^{2} - \frac{191}{2187} a - \frac{97}{243}$, $\frac{1}{4374} a^{6} - \frac{1}{4374} a^{5} + \frac{1}{729} a^{4} - \frac{11}{2187} a^{3} - \frac{136}{2187} a^{2} + \frac{34}{243} a + \frac{4}{9}$, $\frac{1}{13122} a^{7} + \frac{1}{13122} a^{6} - \frac{1}{6561} a^{5} - \frac{2}{6561} a^{4} - \frac{14}{6561} a^{3} - \frac{143}{6561} a^{2} + \frac{1043}{2187} a + \frac{7}{243}$, $\frac{1}{118098} a^{8} + \frac{1}{39366} a^{7} - \frac{2}{19683} a^{6} - \frac{10}{59049} a^{5} + \frac{13}{19683} a^{4} + \frac{260}{19683} a^{3} + \frac{4496}{59049} a^{2} - \frac{1147}{6561} a + \frac{323}{729}$, $\frac{1}{1062882} a^{9} - \frac{2}{531441} a^{8} - \frac{1}{177147} a^{7} - \frac{17}{1062882} a^{6} + \frac{109}{531441} a^{5} + \frac{295}{177147} a^{4} + \frac{3329}{531441} a^{3} - \frac{26000}{531441} a^{2} - \frac{20765}{59049} a - \frac{3122}{6561}$, $\frac{1}{76527504} a^{10} + \frac{7}{76527504} a^{9} - \frac{25}{38263752} a^{8} + \frac{283}{19131876} a^{7} - \frac{539}{19131876} a^{6} - \frac{4061}{19131876} a^{5} - \frac{27245}{19131876} a^{4} - \frac{269159}{19131876} a^{3} + \frac{1245979}{19131876} a^{2} - \frac{61175}{2125764} a - \frac{37961}{236196}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2156019271050 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$A_{11}$ (as 11T7):
| A non-solvable group of order 19958400 |
| The 31 conjugacy class representatives for $A_{11}$ |
| Character table for $A_{11}$ is not computed |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.11.0.1}{11} }$ | ${\href{/LocalNumberField/7.5.0.1}{5} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/13.5.0.1}{5} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.11.0.1}{11} }$ | ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/41.9.0.1}{9} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.9.0.1}{9} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 2.9.8.1 | $x^{9} - 2$ | $9$ | $1$ | $8$ | $(C_9:C_3):C_2$ | $[\ ]_{9}^{6}$ | |
| $3$ | 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.9.15.20 | $x^{9} + 3 x^{8} + 3 x^{7} + 6 x^{6} + 3 x^{3} + 6$ | $9$ | $1$ | $15$ | $C_3^2 : D_{6} $ | $[3/2, 3/2, 2]_{2}^{2}$ | |
| $11$ | 11.11.20.13 | $x^{11} + 66 x^{10} + 11$ | $11$ | $1$ | $20$ | $C_{11}:C_5$ | $[2]^{5}$ |