Normalized defining polynomial
\( x^{11} - 55 x^{9} - 55 x^{8} + 1056 x^{7} + 220 x^{6} - 10560 x^{5} + 32670 x^{4} - 64713 x^{3} + \cdots + 65097 \)
Invariants
| Degree: | $11$ |
| |
| Signature: | $[3, 4]$ |
| |
| Discriminant: |
\(6251410019437223120384256\)
\(\medspace = 2^{8}\cdot 3^{12}\cdot 11^{16}\)
|
| |
| Root discriminant: | \(179.55\) |
| |
| Galois root discriminant: | $2\cdot 3^{4/3}11^{84/55}\approx 337.04067434395165$ | ||
| Ramified primes: |
\(2\), \(3\), \(11\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_1$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2}a^{5}-\frac{1}{2}a^{2}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{2}a^{6}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{12}a^{7}-\frac{1}{6}a^{6}-\frac{1}{4}a^{5}+\frac{5}{12}a^{4}-\frac{1}{12}a^{3}-\frac{1}{2}a^{2}+\frac{1}{4}a+\frac{1}{4}$, $\frac{1}{12}a^{8}-\frac{1}{12}a^{6}-\frac{1}{12}a^{5}-\frac{1}{4}a^{4}-\frac{1}{6}a^{3}-\frac{1}{4}a^{2}+\frac{1}{4}a-\frac{1}{2}$, $\frac{1}{24}a^{9}-\frac{1}{8}a^{6}+\frac{1}{8}a^{4}-\frac{1}{6}a^{3}-\frac{3}{8}a^{2}+\frac{1}{8}a+\frac{3}{8}$, $\frac{1}{17\cdots 88}a^{10}-\frac{278706196184147}{19\cdots 32}a^{9}+\frac{20\cdots 57}{87\cdots 44}a^{8}-\frac{151513381857277}{17\cdots 88}a^{7}+\frac{93\cdots 93}{58\cdots 96}a^{6}+\frac{575332006032307}{13\cdots 76}a^{5}+\frac{52\cdots 89}{58\cdots 96}a^{4}-\frac{43\cdots 99}{19\cdots 32}a^{3}-\frac{20\cdots 41}{73\cdots 12}a^{2}+\frac{21\cdots 71}{48\cdots 08}a+\frac{78\cdots 39}{19\cdots 32}$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $3$ |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | Trivial group, which has order $1$ (assuming GRH) |
|
Unit group
| Rank: | $6$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{633162360583859}{54\cdots 34}a^{10}+\frac{13\cdots 59}{73\cdots 12}a^{9}-\frac{16\cdots 00}{27\cdots 17}a^{8}-\frac{85\cdots 13}{54\cdots 34}a^{7}+\frac{71\cdots 15}{73\cdots 12}a^{6}+\frac{37\cdots 58}{210740497330509}a^{5}-\frac{69\cdots 99}{73\cdots 12}a^{4}+\frac{41\cdots 89}{18\cdots 78}a^{3}-\frac{29\cdots 91}{73\cdots 12}a^{2}+\frac{12\cdots 55}{24\cdots 04}a-\frac{11\cdots 23}{24\cdots 04}$, $\frac{22\cdots 19}{17\cdots 88}a^{10}-\frac{30\cdots 79}{58\cdots 96}a^{9}-\frac{62\cdots 65}{87\cdots 44}a^{8}+\frac{40\cdots 33}{17\cdots 88}a^{7}+\frac{10\cdots 27}{58\cdots 96}a^{6}-\frac{77\cdots 55}{13\cdots 76}a^{5}-\frac{95\cdots 61}{58\cdots 96}a^{4}+\frac{64\cdots 97}{58\cdots 96}a^{3}-\frac{87\cdots 81}{36\cdots 56}a^{2}+\frac{12\cdots 95}{48\cdots 08}a-\frac{23\cdots 39}{19\cdots 32}$, $\frac{49\cdots 73}{17\cdots 88}a^{10}+\frac{63\cdots 77}{19\cdots 32}a^{9}-\frac{46\cdots 15}{87\cdots 44}a^{8}+\frac{96\cdots 95}{17\cdots 88}a^{7}+\frac{19\cdots 79}{19\cdots 32}a^{6}-\frac{62\cdots 17}{13\cdots 76}a^{5}+\frac{21\cdots 83}{19\cdots 32}a^{4}-\frac{11\cdots 89}{58\cdots 96}a^{3}+\frac{46\cdots 11}{18\cdots 78}a^{2}-\frac{12\cdots 31}{48\cdots 08}a+\frac{25\cdots 75}{19\cdots 32}$, $\frac{74\cdots 71}{21\cdots 36}a^{10}+\frac{18\cdots 93}{36\cdots 56}a^{9}-\frac{20\cdots 23}{10\cdots 68}a^{8}-\frac{10\cdots 93}{21\cdots 36}a^{7}+\frac{10\cdots 53}{304402940588513}a^{6}+\frac{11\cdots 07}{16\cdots 72}a^{5}-\frac{31\cdots 56}{913208821765539}a^{4}+\frac{39\cdots 19}{73\cdots 12}a^{3}-\frac{72\cdots 69}{73\cdots 12}a^{2}+\frac{30\cdots 11}{24\cdots 04}a-\frac{52\cdots 77}{12\cdots 52}$, $\frac{35\cdots 53}{29\cdots 48}a^{10}+\frac{23\cdots 77}{29\cdots 48}a^{9}-\frac{10\cdots 15}{14\cdots 24}a^{8}-\frac{11\cdots 79}{97\cdots 16}a^{7}+\frac{41\cdots 27}{29\cdots 48}a^{6}+\frac{30\cdots 83}{22\cdots 96}a^{5}-\frac{48\cdots 65}{29\cdots 48}a^{4}+\frac{86\cdots 53}{29\cdots 48}a^{3}-\frac{21\cdots 71}{24\cdots 04}a^{2}-\frac{11\cdots 64}{304402940588513}a+\frac{37\cdots 73}{97\cdots 16}$, $\frac{84\cdots 49}{87\cdots 44}a^{10}+\frac{96\cdots 39}{29\cdots 48}a^{9}-\frac{24\cdots 43}{43\cdots 72}a^{8}-\frac{62\cdots 89}{87\cdots 44}a^{7}+\frac{11\cdots 71}{97\cdots 16}a^{6}+\frac{45\cdots 79}{67\cdots 88}a^{5}-\frac{12\cdots 77}{97\cdots 16}a^{4}+\frac{80\cdots 59}{29\cdots 48}a^{3}-\frac{35\cdots 15}{18\cdots 78}a^{2}-\frac{30\cdots 67}{24\cdots 04}a+\frac{20\cdots 63}{97\cdots 16}$
|
| |
| Regulator: | \( 2542232225.35 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{3}\cdot(2\pi)^{4}\cdot 2542232225.35 \cdot 1}{2\cdot\sqrt{6251410019437223120384256}}\cr\approx \mathstrut & 6.33878019094 \end{aligned}\] (assuming GRH)
Galois group
$\PSL(2,11)$ (as 11T5):
| A non-solvable group of order 660 |
| The 8 conjugacy class representatives for $\PSL(2,11)$ |
| Character table for $\PSL(2,11)$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Degree 12 sibling: | 12.0.8101827385190641164017995776.1 |
| Arithmetically equivalent sibling: | 11.3.6251410019437223120384256.4 |
| Minimal sibling: | 11.3.6251410019437223120384256.4 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/padicField/5.6.0.1}{6} }{,}\,{\href{/padicField/5.3.0.1}{3} }{,}\,{\href{/padicField/5.2.0.1}{2} }$ | ${\href{/padicField/7.5.0.1}{5} }^{2}{,}\,{\href{/padicField/7.1.0.1}{1} }$ | R | ${\href{/padicField/13.2.0.1}{2} }^{4}{,}\,{\href{/padicField/13.1.0.1}{1} }^{3}$ | ${\href{/padicField/17.11.0.1}{11} }$ | ${\href{/padicField/19.11.0.1}{11} }$ | ${\href{/padicField/23.5.0.1}{5} }^{2}{,}\,{\href{/padicField/23.1.0.1}{1} }$ | ${\href{/padicField/29.5.0.1}{5} }^{2}{,}\,{\href{/padicField/29.1.0.1}{1} }$ | ${\href{/padicField/31.6.0.1}{6} }{,}\,{\href{/padicField/31.3.0.1}{3} }{,}\,{\href{/padicField/31.2.0.1}{2} }$ | ${\href{/padicField/37.3.0.1}{3} }^{3}{,}\,{\href{/padicField/37.1.0.1}{1} }^{2}$ | ${\href{/padicField/41.3.0.1}{3} }^{3}{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ | ${\href{/padicField/43.3.0.1}{3} }^{3}{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ | ${\href{/padicField/47.3.0.1}{3} }^{3}{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ | ${\href{/padicField/53.2.0.1}{2} }^{4}{,}\,{\href{/padicField/53.1.0.1}{1} }^{3}$ | ${\href{/padicField/59.5.0.1}{5} }^{2}{,}\,{\href{/padicField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.2.2a1.2 | $x^{2} + 2 x + 6$ | $2$ | $1$ | $2$ | $C_2$ | $$[2]$$ |
| 2.3.1.0a1.1 | $x^{3} + x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ | |
| 2.3.2.6a1.2 | $x^{6} + 2 x^{4} + 4 x^{3} + x^{2} + 4 x + 9$ | $2$ | $3$ | $6$ | $C_6$ | $$[2]^{3}$$ | |
|
\(3\)
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| 3.1.3.4a2.1 | $x^{3} + 6 x^{2} + 3$ | $3$ | $1$ | $4$ | $C_3$ | $$[2]$$ | |
| 3.1.3.4a2.1 | $x^{3} + 6 x^{2} + 3$ | $3$ | $1$ | $4$ | $C_3$ | $$[2]$$ | |
| 3.1.3.4a2.1 | $x^{3} + 6 x^{2} + 3$ | $3$ | $1$ | $4$ | $C_3$ | $$[2]$$ | |
|
\(11\)
| 11.1.11.16a2.1 | $x^{11} + 22 x^{6} + 11$ | $11$ | $1$ | $16$ | $C_{11}:C_5$ | $$[\frac{8}{5}]_{5}$$ |