Properties

Label 11.3.55080868056...1904.1
Degree $11$
Signature $[3, 4]$
Discriminant $2^{24}\cdot 3^{10}\cdot 11^{18}$
Root discriminant $623.21$
Ramified primes $2, 3, 11$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $A_{11}$ (as 11T7)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![17551512, 26763264, 12613040, -1467972, -981552, 161656, 49368, 0, -286, -132, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^11 - 132*x^9 - 286*x^8 + 49368*x^6 + 161656*x^5 - 981552*x^4 - 1467972*x^3 + 12613040*x^2 + 26763264*x + 17551512)
 
gp: K = bnfinit(x^11 - 132*x^9 - 286*x^8 + 49368*x^6 + 161656*x^5 - 981552*x^4 - 1467972*x^3 + 12613040*x^2 + 26763264*x + 17551512, 1)
 

Normalized defining polynomial

\( x^{11} - 132 x^{9} - 286 x^{8} + 49368 x^{6} + 161656 x^{5} - 981552 x^{4} - 1467972 x^{3} + 12613040 x^{2} + 26763264 x + 17551512 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $11$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[3, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(5508086805677153376057534971904=2^{24}\cdot 3^{10}\cdot 11^{18}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $623.21$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 11$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4}$, $\frac{1}{2} a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{4} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{8} a^{8} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a$, $\frac{1}{8} a^{9} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{111265287073321613043670858392} a^{10} - \frac{214824615626742464978334051}{37088429024440537681223619464} a^{9} - \frac{821814688842775061000083487}{37088429024440537681223619464} a^{8} + \frac{3592853744956266499178422729}{55632643536660806521835429196} a^{7} - \frac{2312063820639866713052960511}{9272107256110134420305904866} a^{6} + \frac{2094786254378968470556484887}{9272107256110134420305904866} a^{5} - \frac{10156468877009609295373556959}{55632643536660806521835429196} a^{4} - \frac{235302163253200808385716351}{9272107256110134420305904866} a^{3} + \frac{2861725366785458619360460799}{9272107256110134420305904866} a^{2} - \frac{2468407633631705234036624773}{27816321768330403260917714598} a + \frac{1279218075944009965580609888}{4636053628055067210152952433}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $6$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 2180097563440 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$A_{11}$ (as 11T7):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 19958400
The 31 conjugacy class representatives for $A_{11}$
Character table for $A_{11}$ is not computed

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.8.0.1}{8} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ ${\href{/LocalNumberField/7.11.0.1}{11} }$ R ${\href{/LocalNumberField/13.9.0.1}{9} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/19.11.0.1}{11} }$ ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ ${\href{/LocalNumberField/29.11.0.1}{11} }$ ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ ${\href{/LocalNumberField/37.9.0.1}{9} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/41.11.0.1}{11} }$ ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{3}$ ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ ${\href{/LocalNumberField/59.5.0.1}{5} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.3.2.1$x^{3} - 2$$3$$1$$2$$S_3$$[\ ]_{3}^{2}$
2.4.11.6$x^{4} + 18$$4$$1$$11$$D_{4}$$[2, 3, 4]$
2.4.11.11$x^{4} + 10$$4$$1$$11$$D_{4}$$[2, 3, 4]$
$3$3.2.1.1$x^{2} - 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.3.3.2$x^{3} + 3 x + 3$$3$$1$$3$$S_3$$[3/2]_{2}$
3.6.6.3$x^{6} + 3 x^{4} + 9$$3$$2$$6$$D_{6}$$[3/2]_{2}^{2}$
$11$11.11.18.1$x^{11} + 66 x^{8} + 11$$11$$1$$18$$C_{11}:C_5$$[9/5]_{5}$