Properties

Label 11.3.54274457067...0000.1
Degree $11$
Signature $[3, 4]$
Discriminant $2^{8}\cdot 3^{12}\cdot 5^{8}\cdot 7^{8}\cdot 11^{6}$
Root discriminant $269.41$
Ramified primes $2, 3, 5, 7, 11$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $A_{11}$ (as 11T7)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![66942152, 23035506, 24700, -1695060, -697410, -98514, -42, 810, -120, -70, -3, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^11 - 3*x^10 - 70*x^9 - 120*x^8 + 810*x^7 - 42*x^6 - 98514*x^5 - 697410*x^4 - 1695060*x^3 + 24700*x^2 + 23035506*x + 66942152)
 
gp: K = bnfinit(x^11 - 3*x^10 - 70*x^9 - 120*x^8 + 810*x^7 - 42*x^6 - 98514*x^5 - 697410*x^4 - 1695060*x^3 + 24700*x^2 + 23035506*x + 66942152, 1)
 

Normalized defining polynomial

\( x^{11} - 3 x^{10} - 70 x^{9} - 120 x^{8} + 810 x^{7} - 42 x^{6} - 98514 x^{5} - 697410 x^{4} - 1695060 x^{3} + 24700 x^{2} + 23035506 x + 66942152 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $11$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[3, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(542744570674703420100000000=2^{8}\cdot 3^{12}\cdot 5^{8}\cdot 7^{8}\cdot 11^{6}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $269.41$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 5, 7, 11$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{5} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3}$, $\frac{1}{3} a^{6} - \frac{1}{3}$, $\frac{1}{9} a^{7} - \frac{1}{9} a^{6} - \frac{1}{9} a^{4} + \frac{1}{9} a^{3} - \frac{2}{9} a + \frac{2}{9}$, $\frac{1}{9} a^{8} - \frac{1}{9} a^{6} - \frac{1}{9} a^{5} + \frac{1}{9} a^{3} - \frac{2}{9} a^{2} + \frac{2}{9}$, $\frac{1}{45} a^{9} - \frac{1}{45} a^{8} + \frac{2}{45} a^{7} - \frac{2}{45} a^{5} + \frac{4}{45} a^{4} + \frac{2}{15} a^{3} + \frac{8}{45} a^{2} + \frac{4}{9} a + \frac{7}{45}$, $\frac{1}{5926150532419491581572821390} a^{10} - \frac{4952755950679329620257643}{538740957492681052870256490} a^{9} - \frac{8874937471870870775048662}{329230585134416198976267855} a^{8} - \frac{3875869158333495663188489}{89790159582113508811709415} a^{7} + \frac{58353073846336653004586848}{987691755403248596928803565} a^{6} - \frac{13321392272806567936932848}{109743528378138732992089285} a^{5} - \frac{15836490147241995492219157}{987691755403248596928803565} a^{4} - \frac{167091242827876186940665139}{987691755403248596928803565} a^{3} + \frac{10575909125811512301506708}{29930053194037836270569805} a^{2} - \frac{159327393693836120462767819}{2963075266209745790786410695} a - \frac{521123607469996061494955072}{2963075266209745790786410695}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $6$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 41258975511.4 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$A_{11}$ (as 11T7):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 19958400
The 31 conjugacy class representatives for $A_{11}$
Character table for $A_{11}$ is not computed

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R R R R ${\href{/LocalNumberField/13.5.0.1}{5} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ ${\href{/LocalNumberField/17.11.0.1}{11} }$ ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ ${\href{/LocalNumberField/23.5.0.1}{5} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ ${\href{/LocalNumberField/29.11.0.1}{11} }$ ${\href{/LocalNumberField/31.11.0.1}{11} }$ ${\href{/LocalNumberField/37.11.0.1}{11} }$ ${\href{/LocalNumberField/41.9.0.1}{9} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/43.7.0.1}{7} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ ${\href{/LocalNumberField/47.11.0.1}{11} }$ ${\href{/LocalNumberField/53.9.0.1}{9} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/59.11.0.1}{11} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$$\Q_{2}$$x + 1$$1$$1$$0$Trivial$[\ ]$
$\Q_{2}$$x + 1$$1$$1$$0$Trivial$[\ ]$
2.9.8.1$x^{9} - 2$$9$$1$$8$$(C_9:C_3):C_2$$[\ ]_{9}^{6}$
$3$$\Q_{3}$$x + 1$$1$$1$$0$Trivial$[\ ]$
$\Q_{3}$$x + 1$$1$$1$$0$Trivial$[\ ]$
3.9.12.12$x^{9} + 3 x^{6} + 18 x^{5} + 54$$3$$3$$12$$C_3 \wr C_3 $$[2, 2, 2]^{3}$
$5$$\Q_{5}$$x + 2$$1$$1$$0$Trivial$[\ ]$
5.2.1.1$x^{2} - 5$$2$$1$$1$$C_2$$[\ ]_{2}$
5.8.7.2$x^{8} - 20$$8$$1$$7$$C_8:C_2$$[\ ]_{8}^{2}$
$7$7.3.2.2$x^{3} - 7$$3$$1$$2$$C_3$$[\ ]_{3}$
7.8.6.2$x^{8} - 49 x^{4} + 3969$$4$$2$$6$$D_4$$[\ ]_{4}^{2}$
$11$$\Q_{11}$$x + 3$$1$$1$$0$Trivial$[\ ]$
$\Q_{11}$$x + 3$$1$$1$$0$Trivial$[\ ]$
$\Q_{11}$$x + 3$$1$$1$$0$Trivial$[\ ]$
$\Q_{11}$$x + 3$$1$$1$$0$Trivial$[\ ]$
11.7.6.1$x^{7} - 11$$7$$1$$6$$C_7:C_3$$[\ ]_{7}^{3}$