Normalized defining polynomial
\( x^{11} - 4 x^{10} - 318 x^{9} - 156 x^{8} - 15012 x^{7} + 643152 x^{6} - 5337282 x^{5} + 136254876 x^{4} - 762562533 x^{3} + 10531148484 x^{2} - 46920135888 x + 95047524720 \)
Invariants
| Degree: | $11$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[3, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(38739734030642940596585926656000000=2^{18}\cdot 3^{8}\cdot 5^{6}\cdot 7^{8}\cdot 251^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1394.37$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7, 251$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{10} a^{6} + \frac{1}{10} a^{5} + \frac{1}{5} a^{4} + \frac{2}{5} a^{3} + \frac{3}{10} a^{2} - \frac{1}{10} a$, $\frac{1}{10} a^{7} + \frac{1}{10} a^{5} + \frac{1}{5} a^{4} - \frac{1}{10} a^{3} - \frac{2}{5} a^{2} + \frac{1}{10} a$, $\frac{1}{100} a^{8} + \frac{1}{50} a^{7} - \frac{3}{100} a^{6} - \frac{1}{10} a^{5} + \frac{1}{20} a^{4} + \frac{2}{25} a^{3} + \frac{1}{100} a^{2} - \frac{1}{25} a - \frac{2}{5}$, $\frac{1}{300} a^{9} - \frac{1}{300} a^{8} - \frac{3}{100} a^{7} + \frac{3}{100} a^{6} + \frac{3}{20} a^{5} + \frac{21}{100} a^{4} - \frac{11}{100} a^{3} - \frac{9}{100} a^{2} + \frac{1}{25} a + \frac{2}{5}$, $\frac{1}{26089391730579751461608039800131575403300} a^{10} - \frac{1995198525489703034364758688184183487}{8696463910193250487202679933377191801100} a^{9} + \frac{679989249289484470385127053629334654}{176279673855268590956811079730618752725} a^{8} + \frac{297264654503737141448205818238721733997}{8696463910193250487202679933377191801100} a^{7} - \frac{51372607411409645491046008272951791164}{2174115977548312621800669983344297950275} a^{6} + \frac{1817140833035922942826531575510750208971}{8696463910193250487202679933377191801100} a^{5} + \frac{593244280491694857879639882045546121477}{4348231955096625243601339966688595900550} a^{4} + \frac{3936629591287183942971881409973624257657}{8696463910193250487202679933377191801100} a^{3} + \frac{3648907462373621760238858010842014151111}{8696463910193250487202679933377191801100} a^{2} + \frac{2014193167795343111425542388281273720091}{4348231955096625243601339966688595900550} a - \frac{136424346641283131076356526013811612974}{434823195509662524360133996668859590055}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 513874226540000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$M_{11}$ (as 11T6):
| A non-solvable group of order 7920 |
| The 10 conjugacy class representatives for $M_{11}$ |
| Character table for $M_{11}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/LocalNumberField/11.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/29.11.0.1}{11} }$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.11.0.1}{11} }$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.8.16.74 | $x^{8} + 14 x^{6} + 20$ | $8$ | $1$ | $16$ | $\textrm{GL(2,3)}$ | $[4/3, 4/3, 3]_{3}^{2}$ | |
| $3$ | $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.8.7.2 | $x^{8} - 3$ | $8$ | $1$ | $7$ | $QD_{16}$ | $[\ ]_{8}^{2}$ | |
| $5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $7$ | $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 7.5.4.1 | $x^{5} - 7$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| 7.5.4.1 | $x^{5} - 7$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| 251 | Data not computed | ||||||