Normalized defining polynomial
\( x^{11} - 3025 x^{8} - 18150 x^{7} + 390225 x^{6} - 2498650 x^{5} + 105215550 x^{4} - 916892625 x^{3} + 404956750 x^{2} + 8463163500 x + 9205180875 \)
Invariants
| Degree: | $11$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[3, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(31423265337037027486797829775390625=3^{14}\cdot 5^{10}\cdot 11^{20}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1368.09$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{5} a^{4}$, $\frac{1}{5} a^{5}$, $\frac{1}{55} a^{6}$, $\frac{1}{55} a^{7}$, $\frac{1}{825} a^{8} - \frac{1}{165} a^{7} + \frac{1}{15} a^{5} + \frac{1}{15} a^{4} - \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{825} a^{9} + \frac{1}{165} a^{7} - \frac{1}{165} a^{6} - \frac{1}{15} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{716457974324762125688067254818575} a^{10} - \frac{74941419222492724479332177644}{716457974324762125688067254818575} a^{9} - \frac{36689949589872489283717877147}{716457974324762125688067254818575} a^{8} + \frac{64938393488309831702326565593}{28658318972990485027522690192743} a^{7} + \frac{241098587126357410165412404061}{28658318972990485027522690192743} a^{6} - \frac{119731233083515867622915207287}{2605301724817316820683880926613} a^{5} - \frac{180605384852556468294394545922}{2605301724817316820683880926613} a^{4} - \frac{617133304435389396389157847250}{2605301724817316820683880926613} a^{3} + \frac{1188699857642752033510633134524}{2605301724817316820683880926613} a^{2} - \frac{414671316132441253587754201952}{868433908272438940227960308871} a + \frac{142674827729121839403025088040}{289477969424146313409320102957}$
Class group and class number
$C_{11}$, which has order $11$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3043690739730 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$A_{11}$ (as 11T7):
| A non-solvable group of order 19958400 |
| The 31 conjugacy class representatives for $A_{11}$ |
| Character table for $A_{11}$ is not computed |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.11.0.1}{11} }$ | R | R | ${\href{/LocalNumberField/7.7.0.1}{7} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/13.5.0.1}{5} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.7.0.1}{7} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.5.0.1}{5} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/29.11.0.1}{11} }$ | ${\href{/LocalNumberField/31.7.0.1}{7} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.9.0.1}{9} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.9.0.1}{9} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.9.0.1}{9} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.11.0.1}{11} }$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.3.4.3 | $x^{3} - 3 x^{2} + 12$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ | |
| 3.6.9.15 | $x^{6} + 6 x^{4} + 6 x^{3} + 12$ | $6$ | $1$ | $9$ | $S_3\times C_3$ | $[3/2, 2]_{2}$ | |
| $5$ | 5.11.10.1 | $x^{11} - 5$ | $11$ | $1$ | $10$ | $C_{11}:C_5$ | $[\ ]_{11}^{5}$ |
| $11$ | 11.11.20.5 | $x^{11} - 11 x^{10} + 858$ | $11$ | $1$ | $20$ | $C_{11}$ | $[2]$ |