Normalized defining polynomial
\( x^{11} - 33 x^{9} - 22 x^{8} + 396 x^{7} - 132 x^{6} - 1408 x^{5} + 4048 x^{4} + 26048 x^{3} + \cdots - 60672 \)
Invariants
| Degree: | $11$ |
| |
| Signature: | $[3, 4]$ |
| |
| Discriminant: |
\(3011361496339065143296\)
\(\medspace = 2^{16}\cdot 11^{16}\)
|
| |
| Root discriminant: | \(89.66\) |
| |
| Galois root discriminant: | $2^{11/6}11^{84/55}\approx 138.7966460710778$ | ||
| Ramified primes: |
\(2\), \(11\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_1$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2}a^{4}-\frac{1}{2}a^{2}$, $\frac{1}{4}a^{5}-\frac{1}{4}a^{3}-\frac{1}{2}a^{2}$, $\frac{1}{8}a^{6}-\frac{1}{8}a^{4}+\frac{1}{4}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{16}a^{7}-\frac{1}{16}a^{5}+\frac{1}{8}a^{4}-\frac{1}{4}a^{3}+\frac{1}{4}a^{2}$, $\frac{1}{32}a^{8}-\frac{1}{32}a^{6}+\frac{1}{16}a^{5}-\frac{1}{8}a^{4}+\frac{1}{8}a^{3}-\frac{1}{2}a$, $\frac{1}{64}a^{9}-\frac{1}{64}a^{7}+\frac{1}{32}a^{6}-\frac{1}{16}a^{5}+\frac{1}{16}a^{4}-\frac{1}{2}a^{3}-\frac{1}{4}a^{2}-\frac{1}{2}a$, $\frac{1}{30\cdots 44}a^{10}-\frac{184998999493835}{37\cdots 68}a^{9}-\frac{25\cdots 45}{30\cdots 44}a^{8}+\frac{246793817321013}{15\cdots 72}a^{7}+\frac{14631225182049}{23\cdots 73}a^{6}+\frac{21\cdots 07}{75\cdots 36}a^{5}+\frac{491712753829421}{18\cdots 84}a^{4}-\frac{209880365091193}{46\cdots 46}a^{3}+\frac{564746769856721}{93\cdots 92}a^{2}+\frac{14\cdots 57}{46\cdots 46}a-\frac{10\cdots 37}{23\cdots 73}$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $2$ |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | Trivial group, which has order $1$ (assuming GRH) |
|
Unit group
| Rank: | $6$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{7574173599515}{30\cdots 44}a^{10}+\frac{105583407673975}{15\cdots 72}a^{9}-\frac{21\cdots 23}{30\cdots 44}a^{8}+\frac{561316889120089}{37\cdots 68}a^{7}+\frac{981929766866527}{75\cdots 36}a^{6}-\frac{40\cdots 81}{75\cdots 36}a^{5}+\frac{822885616465973}{37\cdots 68}a^{4}-\frac{512793607457743}{23\cdots 73}a^{3}+\frac{24\cdots 51}{46\cdots 46}a^{2}-\frac{30\cdots 34}{23\cdots 73}a-\frac{11\cdots 49}{23\cdots 73}$, $\frac{598675923268863}{30\cdots 44}a^{10}+\frac{43735023683927}{18\cdots 84}a^{9}-\frac{23\cdots 23}{30\cdots 44}a^{8}-\frac{40\cdots 29}{15\cdots 72}a^{7}+\frac{11\cdots 63}{75\cdots 36}a^{6}-\frac{69\cdots 17}{75\cdots 36}a^{5}-\frac{17\cdots 99}{46\cdots 46}a^{4}+\frac{60\cdots 61}{18\cdots 84}a^{3}+\frac{81\cdots 87}{93\cdots 92}a^{2}+\frac{72\cdots 41}{23\cdots 73}a+\frac{11\cdots 84}{23\cdots 73}$, $\frac{65851539929575}{15\cdots 72}a^{10}+\frac{10185011050963}{37\cdots 68}a^{9}-\frac{13\cdots 91}{15\cdots 72}a^{8}-\frac{15\cdots 17}{75\cdots 36}a^{7}+\frac{13\cdots 15}{18\cdots 84}a^{6}+\frac{240842793006739}{93\cdots 92}a^{5}-\frac{14\cdots 19}{46\cdots 46}a^{4}-\frac{23\cdots 25}{93\cdots 92}a^{3}+\frac{15\cdots 01}{93\cdots 92}a^{2}-\frac{34\cdots 79}{46\cdots 46}a-\frac{41\cdots 15}{23\cdots 73}$, $\frac{82\cdots 15}{30\cdots 44}a^{10}-\frac{36\cdots 85}{15\cdots 72}a^{9}+\frac{15\cdots 37}{30\cdots 44}a^{8}+\frac{20\cdots 25}{37\cdots 68}a^{7}-\frac{17\cdots 41}{46\cdots 46}a^{6}+\frac{63\cdots 77}{75\cdots 36}a^{5}-\frac{11\cdots 41}{37\cdots 68}a^{4}+\frac{42\cdots 81}{18\cdots 84}a^{3}-\frac{27\cdots 87}{46\cdots 46}a^{2}+\frac{99\cdots 43}{46\cdots 46}a+\frac{12\cdots 15}{23\cdots 73}$, $\frac{148213847589121}{75\cdots 36}a^{10}-\frac{147852332102697}{18\cdots 84}a^{9}-\frac{23\cdots 05}{75\cdots 36}a^{8}+\frac{860000081816817}{93\cdots 92}a^{7}+\frac{26\cdots 83}{18\cdots 84}a^{6}-\frac{81\cdots 91}{37\cdots 68}a^{5}+\frac{11\cdots 71}{18\cdots 84}a^{4}+\frac{27\cdots 27}{93\cdots 92}a^{3}+\frac{18\cdots 47}{93\cdots 92}a^{2}-\frac{25\cdots 85}{23\cdots 73}a-\frac{44\cdots 76}{23\cdots 73}$, $\frac{15\cdots 13}{30\cdots 44}a^{10}+\frac{25\cdots 39}{15\cdots 72}a^{9}-\frac{34\cdots 05}{30\cdots 44}a^{8}-\frac{37\cdots 69}{75\cdots 36}a^{7}+\frac{16\cdots 63}{37\cdots 68}a^{6}+\frac{54\cdots 29}{75\cdots 36}a^{5}-\frac{18\cdots 61}{37\cdots 68}a^{4}+\frac{91\cdots 97}{18\cdots 84}a^{3}+\frac{14\cdots 01}{93\cdots 92}a^{2}+\frac{13\cdots 35}{23\cdots 73}a+\frac{22\cdots 11}{23\cdots 73}$
|
| |
| Regulator: | \( 52170956.4414 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{3}\cdot(2\pi)^{4}\cdot 52170956.4414 \cdot 1}{2\cdot\sqrt{3011361496339065143296}}\cr\approx \mathstrut & 5.92688931481 \end{aligned}\] (assuming GRH)
Galois group
$\PSL(2,11)$ (as 11T5):
| A non-solvable group of order 660 |
| The 8 conjugacy class representatives for $\PSL(2,11)$ |
| Character table for $\PSL(2,11)$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Degree 12 sibling: | 12.0.192727135765700169170944.1 |
| Arithmetically equivalent sibling: | 11.3.3011361496339065143296.1 |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.3.0.1}{3} }^{3}{,}\,{\href{/padicField/3.1.0.1}{1} }^{2}$ | ${\href{/padicField/5.5.0.1}{5} }^{2}{,}\,{\href{/padicField/5.1.0.1}{1} }$ | ${\href{/padicField/7.5.0.1}{5} }^{2}{,}\,{\href{/padicField/7.1.0.1}{1} }$ | R | ${\href{/padicField/13.11.0.1}{11} }$ | ${\href{/padicField/17.11.0.1}{11} }$ | ${\href{/padicField/19.3.0.1}{3} }^{3}{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ | ${\href{/padicField/23.5.0.1}{5} }^{2}{,}\,{\href{/padicField/23.1.0.1}{1} }$ | ${\href{/padicField/29.6.0.1}{6} }{,}\,{\href{/padicField/29.3.0.1}{3} }{,}\,{\href{/padicField/29.2.0.1}{2} }$ | ${\href{/padicField/31.3.0.1}{3} }^{3}{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ | ${\href{/padicField/37.11.0.1}{11} }$ | ${\href{/padicField/41.6.0.1}{6} }{,}\,{\href{/padicField/41.3.0.1}{3} }{,}\,{\href{/padicField/41.2.0.1}{2} }$ | ${\href{/padicField/43.11.0.1}{11} }$ | ${\href{/padicField/47.5.0.1}{5} }^{2}{,}\,{\href{/padicField/47.1.0.1}{1} }$ | ${\href{/padicField/53.5.0.1}{5} }^{2}{,}\,{\href{/padicField/53.1.0.1}{1} }$ | ${\href{/padicField/59.5.0.1}{5} }^{2}{,}\,{\href{/padicField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.2.3a1.4 | $x^{2} + 4 x + 10$ | $2$ | $1$ | $3$ | $C_2$ | $$[3]$$ |
| 2.1.3.2a1.1 | $x^{3} + 2$ | $3$ | $1$ | $2$ | $S_3$ | $$[\ ]_{3}^{2}$$ | |
| 2.1.6.11a1.5 | $x^{6} + 4 x^{3} + 2$ | $6$ | $1$ | $11$ | $D_{6}$ | $$[3]_{3}^{2}$$ | |
|
\(11\)
| 11.1.11.16a2.1 | $x^{11} + 22 x^{6} + 11$ | $11$ | $1$ | $16$ | $C_{11}:C_5$ | $$[\frac{8}{5}]_{5}$$ |