Normalized defining polynomial
\( x^{11} - 55 x^{9} - 330 x^{8} - 990 x^{7} - 1848 x^{6} - 2310 x^{5} - 1980 x^{4} - 1155 x^{3} - 440 x^{2} - 99 x + 3519999990 \)
Invariants
| Degree: | $11$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[3, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(26279296677053125359414062500000000=2^{8}\cdot 5^{16}\cdot 11^{20}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1346.03$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{20} a^{3} + \frac{1}{10} a^{2} - \frac{9}{20} a - \frac{1}{2}$, $\frac{1}{200} a^{4} + \frac{3}{200} a^{3} - \frac{7}{200} a^{2} + \frac{81}{200} a + \frac{9}{20}$, $\frac{1}{400} a^{5} + \frac{1}{100} a^{3} - \frac{29}{200} a^{2} - \frac{133}{400} a - \frac{7}{40}$, $\frac{1}{16000} a^{6} + \frac{3}{3200} a^{5} - \frac{1}{400} a^{4} - \frac{1}{1600} a^{3} - \frac{251}{3200} a^{2} + \frac{5291}{16000} a - \frac{141}{1600}$, $\frac{1}{160000} a^{7} - \frac{1}{40000} a^{6} + \frac{31}{32000} a^{5} + \frac{27}{16000} a^{4} - \frac{437}{32000} a^{3} + \frac{1091}{10000} a^{2} - \frac{78259}{160000} a + \frac{6199}{16000}$, $\frac{1}{320000} a^{8} - \frac{1}{320000} a^{7} + \frac{3}{320000} a^{6} + \frac{47}{64000} a^{5} - \frac{23}{12800} a^{4} + \frac{4301}{320000} a^{3} - \frac{69391}{320000} a^{2} - \frac{75127}{320000} a + \frac{15937}{32000}$, $\frac{1}{3200000} a^{9} - \frac{1}{1600000} a^{8} + \frac{1}{400000} a^{7} - \frac{1}{50000} a^{6} - \frac{119}{320000} a^{5} + \frac{1889}{800000} a^{4} + \frac{4023}{200000} a^{3} + \frac{2321}{25000} a^{2} + \frac{1236781}{3200000} a + \frac{99539}{320000}$, $\frac{1}{288000000} a^{10} + \frac{1}{32000000} a^{9} + \frac{13}{144000000} a^{8} - \frac{1}{3000000} a^{7} - \frac{103}{16000000} a^{6} + \frac{26911}{48000000} a^{5} - \frac{14093}{24000000} a^{4} + \frac{38833}{4000000} a^{3} - \frac{5652457}{96000000} a^{2} - \frac{35796779}{288000000} a + \frac{714321}{3200000}$
Class group and class number
$C_{11}$, which has order $11$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 9762852289690 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$A_{11}$ (as 11T7):
| A non-solvable group of order 19958400 |
| The 31 conjugacy class representatives for $A_{11}$ |
| Character table for $A_{11}$ is not computed |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.7.0.1}{7} }{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/7.11.0.1}{11} }$ | R | ${\href{/LocalNumberField/13.9.0.1}{9} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.11.0.1}{11} }$ | ${\href{/LocalNumberField/23.9.0.1}{9} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.9.0.1}{9} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.11.0.1}{11} }$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.9.0.1}{9} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.11.0.1}{11} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 2.5.4.1 | $x^{5} - 2$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| 2.5.4.1 | $x^{5} - 2$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| $5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 5.10.16.34 | $x^{10} - 20 x^{7} + 5$ | $10$ | $1$ | $16$ | $(C_5^2 : C_8):C_2$ | $[15/8, 15/8]_{8}^{2}$ | |
| $11$ | 11.11.20.10 | $x^{11} - 11 x^{10} + 132$ | $11$ | $1$ | $20$ | $C_{11}$ | $[2]$ |