Normalized defining polynomial
\( x^{11} - 55 x^{9} - 154 x^{8} - 264 x^{7} - 2024 x^{6} - 7150 x^{5} + 3432 x^{4} - 15554 x^{3} + \cdots + 86888 \)
Invariants
| Degree: | $11$ |
| |
| Signature: | $[3, 4]$ |
| |
| Discriminant: |
\(243920281203464276606976\)
\(\medspace = 2^{16}\cdot 3^{4}\cdot 11^{16}\)
|
| |
| Root discriminant: | \(133.69\) |
| |
| Galois root discriminant: | $2^{11/6}3^{1/2}11^{84/55}\approx 240.40284291526194$ | ||
| Ramified primes: |
\(2\), \(3\), \(11\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_1$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{3}a^{3}-\frac{1}{3}a^{2}-\frac{1}{3}a+\frac{1}{3}$, $\frac{1}{3}a^{4}+\frac{1}{3}a^{2}+\frac{1}{3}$, $\frac{1}{9}a^{5}-\frac{1}{9}a^{4}+\frac{1}{9}a^{3}+\frac{2}{9}a^{2}-\frac{2}{9}a-\frac{1}{9}$, $\frac{1}{297}a^{6}+\frac{16}{297}a^{5}+\frac{26}{297}a^{4}-\frac{20}{297}a^{3}+\frac{59}{297}a^{2}-\frac{50}{297}a-\frac{32}{297}$, $\frac{1}{594}a^{7}-\frac{1}{594}a^{6}+\frac{1}{33}a^{5}+\frac{1}{9}a^{4}-\frac{5}{99}a^{3}-\frac{38}{99}a^{2}+\frac{46}{297}a+\frac{41}{297}$, $\frac{1}{594}a^{8}-\frac{1}{594}a^{6}-\frac{1}{99}a^{5}-\frac{2}{33}a^{4}-\frac{16}{99}a^{3}+\frac{94}{297}a^{2}-\frac{19}{99}a+\frac{32}{297}$, $\frac{1}{5346}a^{9}-\frac{1}{1782}a^{8}-\frac{1}{1782}a^{7}+\frac{5}{5346}a^{6}-\frac{26}{891}a^{5}-\frac{20}{297}a^{4}+\frac{10}{2673}a^{3}+\frac{26}{81}a^{2}-\frac{409}{891}a-\frac{274}{2673}$, $\frac{1}{27593731836}a^{10}+\frac{19823}{1254260538}a^{9}+\frac{8177}{1021990068}a^{8}-\frac{201436}{6898432959}a^{7}+\frac{202663}{1254260538}a^{6}-\frac{10968707}{2299477653}a^{5}-\frac{332797}{39084606}a^{4}+\frac{614456662}{6898432959}a^{3}+\frac{665697991}{4598955306}a^{2}-\frac{384406151}{6898432959}a+\frac{2293962866}{6898432959}$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $2$, $3$ |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | Trivial group, which has order $1$ (assuming GRH) |
|
Unit group
| Rank: | $6$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{531552431}{13796865918}a^{10}+\frac{2370542390}{6898432959}a^{9}+\frac{724722391}{766492551}a^{8}+\frac{34427872933}{13796865918}a^{7}+\frac{83378001562}{6898432959}a^{6}+\frac{68686554415}{2299477653}a^{5}-\frac{182341871}{19542303}a^{4}+\frac{345334810321}{6898432959}a^{3}-\frac{351708318196}{2299477653}a^{2}-\frac{906090737393}{6898432959}a-\frac{2594670939367}{6898432959}$, $\frac{158425253}{4598955306}a^{10}-\frac{880293977}{4598955306}a^{9}-\frac{163709126}{85165839}a^{8}+\frac{17041582148}{2299477653}a^{7}+\frac{23881918681}{2299477653}a^{6}-\frac{71913945041}{766492551}a^{5}+\frac{2241450229}{6514101}a^{4}+\frac{1151197444462}{2299477653}a^{3}-\frac{1415690731225}{766492551}a^{2}+\frac{10066967673013}{2299477653}a-\frac{14625420074929}{2299477653}$, $\frac{2302629367}{2299477653}a^{10}+\frac{1680322928}{2299477653}a^{9}-\frac{4318312573}{56777226}a^{8}-\frac{26150073475}{418086846}a^{7}+\frac{483122552248}{2299477653}a^{6}-\frac{3423941830820}{766492551}a^{5}+\frac{30623585908}{6514101}a^{4}-\frac{26723103197792}{2299477653}a^{3}+\frac{11428505430230}{766492551}a^{2}-\frac{5641715365019}{2299477653}a+\frac{94894661131019}{2299477653}$, $\frac{453424873015}{13796865918}a^{10}-\frac{2433042681835}{13796865918}a^{9}-\frac{589498245389}{766492551}a^{8}-\frac{9065641406891}{6898432959}a^{7}-\frac{29316345245221}{6898432959}a^{6}-\frac{116520121331992}{2299477653}a^{5}+\frac{314850001694}{19542303}a^{4}-\frac{983949248106862}{6898432959}a^{3}+\frac{203335096617133}{2299477653}a^{2}-\frac{315265549712815}{6898432959}a+\frac{25\cdots 91}{6898432959}$, $\frac{1640714211845}{4598955306}a^{10}+\frac{910836966283}{1532985102}a^{9}-\frac{14264174470078}{766492551}a^{8}-\frac{197665277270110}{2299477653}a^{7}-\frac{182843637047059}{766492551}a^{6}-\frac{8677740459845}{7742349}a^{5}-\frac{28824565508591}{6514101}a^{4}-\frac{47\cdots 16}{766492551}a^{3}-\frac{12\cdots 31}{766492551}a^{2}-\frac{35\cdots 02}{2299477653}a-\frac{142755751458061}{7742349}$, $\frac{257472757493}{27593731836}a^{10}-\frac{3072316180742}{6898432959}a^{9}+\frac{7121590284337}{3065970204}a^{8}+\frac{145444379402741}{13796865918}a^{7}-\frac{341471736484621}{6898432959}a^{6}+\frac{635671370713829}{2299477653}a^{5}-\frac{13210367233487}{39084606}a^{4}+\frac{48\cdots 79}{6898432959}a^{3}-\frac{37\cdots 47}{4598955306}a^{2}+\frac{259976395434346}{627130269}a-\frac{14\cdots 63}{6898432959}$
|
| |
| Regulator: | \( 2824285089.59 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{3}\cdot(2\pi)^{4}\cdot 2824285089.59 \cdot 1}{2\cdot\sqrt{243920281203464276606976}}\cr\approx \mathstrut & 35.6503700340 \end{aligned}\] (assuming GRH)
Galois group
$\PSL(2,11)$ (as 11T5):
| A non-solvable group of order 660 |
| The 8 conjugacy class representatives for $\PSL(2,11)$ |
| Character table for $\PSL(2,11)$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Degree 12 sibling: | 12.0.140498081973195423325618176.3 |
| Arithmetically equivalent sibling: | 11.3.243920281203464276606976.1 |
| Minimal sibling: | 11.3.243920281203464276606976.1 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/padicField/5.6.0.1}{6} }{,}\,{\href{/padicField/5.3.0.1}{3} }{,}\,{\href{/padicField/5.2.0.1}{2} }$ | ${\href{/padicField/7.5.0.1}{5} }^{2}{,}\,{\href{/padicField/7.1.0.1}{1} }$ | R | ${\href{/padicField/13.5.0.1}{5} }^{2}{,}\,{\href{/padicField/13.1.0.1}{1} }$ | ${\href{/padicField/17.5.0.1}{5} }^{2}{,}\,{\href{/padicField/17.1.0.1}{1} }$ | ${\href{/padicField/19.6.0.1}{6} }{,}\,{\href{/padicField/19.3.0.1}{3} }{,}\,{\href{/padicField/19.2.0.1}{2} }$ | ${\href{/padicField/23.5.0.1}{5} }^{2}{,}\,{\href{/padicField/23.1.0.1}{1} }$ | ${\href{/padicField/29.5.0.1}{5} }^{2}{,}\,{\href{/padicField/29.1.0.1}{1} }$ | ${\href{/padicField/31.5.0.1}{5} }^{2}{,}\,{\href{/padicField/31.1.0.1}{1} }$ | ${\href{/padicField/37.3.0.1}{3} }^{3}{,}\,{\href{/padicField/37.1.0.1}{1} }^{2}$ | ${\href{/padicField/41.5.0.1}{5} }^{2}{,}\,{\href{/padicField/41.1.0.1}{1} }$ | ${\href{/padicField/43.5.0.1}{5} }^{2}{,}\,{\href{/padicField/43.1.0.1}{1} }$ | ${\href{/padicField/47.5.0.1}{5} }^{2}{,}\,{\href{/padicField/47.1.0.1}{1} }$ | ${\href{/padicField/53.5.0.1}{5} }^{2}{,}\,{\href{/padicField/53.1.0.1}{1} }$ | ${\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.3.0.1}{3} }{,}\,{\href{/padicField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.2.3a1.2 | $x^{2} + 10$ | $2$ | $1$ | $3$ | $C_2$ | $$[3]$$ |
| 2.1.3.2a1.1 | $x^{3} + 2$ | $3$ | $1$ | $2$ | $S_3$ | $$[\ ]_{3}^{2}$$ | |
| 2.1.6.11a1.1 | $x^{6} + 2$ | $6$ | $1$ | $11$ | $D_{6}$ | $$[3]_{3}^{2}$$ | |
|
\(3\)
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| 3.1.2.1a1.2 | $x^{2} + 6$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 3.1.2.1a1.2 | $x^{2} + 6$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 3.1.2.1a1.2 | $x^{2} + 6$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 3.1.2.1a1.2 | $x^{2} + 6$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
|
\(11\)
| 11.1.11.16a2.1 | $x^{11} + 22 x^{6} + 11$ | $11$ | $1$ | $16$ | $C_{11}:C_5$ | $$[\frac{8}{5}]_{5}$$ |