Normalized defining polynomial
\( x^{11} - 44 x^{9} - 110 x^{8} + 902 x^{7} + 1056 x^{6} - 7414 x^{5} + 16808 x^{4} + 42515 x^{3} + \cdots - 344186 \)
Invariants
| Degree: | $11$ |
| |
| Signature: | $[3, 4]$ |
| |
| Discriminant: |
\(243920281203464276606976\)
\(\medspace = 2^{16}\cdot 3^{4}\cdot 11^{16}\)
|
| |
| Root discriminant: | \(133.69\) |
| |
| Galois root discriminant: | $2^{11/6}3^{1/2}11^{84/55}\approx 240.40284291526194$ | ||
| Ramified primes: |
\(2\), \(3\), \(11\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_1$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2}a^{9}-\frac{1}{2}a^{7}-\frac{1}{2}a^{5}-\frac{1}{2}a^{3}$, $\frac{1}{55\cdots 32}a^{10}-\frac{12\cdots 09}{55\cdots 32}a^{9}+\frac{17\cdots 13}{55\cdots 32}a^{8}+\frac{15\cdots 61}{61\cdots 48}a^{7}+\frac{16\cdots 55}{12\cdots 24}a^{6}-\frac{32\cdots 69}{55\cdots 32}a^{5}+\frac{13\cdots 31}{55\cdots 32}a^{4}+\frac{37\cdots 31}{18\cdots 44}a^{3}-\frac{66\cdots 41}{27\cdots 16}a^{2}-\frac{56\cdots 61}{27\cdots 16}a-\frac{37\cdots 49}{27\cdots 16}$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $2$ |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | Trivial group, which has order $1$ (assuming GRH) |
|
Unit group
| Rank: | $6$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{70\cdots 56}{11\cdots 09}a^{10}+\frac{25\cdots 57}{11\cdots 09}a^{9}-\frac{16\cdots 87}{11\cdots 09}a^{8}-\frac{17\cdots 92}{38\cdots 03}a^{7}+\frac{32\cdots 53}{26\cdots 63}a^{6}-\frac{32\cdots 56}{11\cdots 09}a^{5}-\frac{72\cdots 00}{11\cdots 09}a^{4}+\frac{18\cdots 20}{38\cdots 03}a^{3}+\frac{26\cdots 09}{11\cdots 09}a^{2}+\frac{32\cdots 78}{11\cdots 09}a+\frac{12\cdots 67}{11\cdots 09}$, $\frac{80\cdots 35}{55\cdots 32}a^{10}-\frac{88\cdots 91}{55\cdots 32}a^{9}-\frac{30\cdots 29}{55\cdots 32}a^{8}+\frac{31\cdots 31}{61\cdots 48}a^{7}+\frac{48\cdots 33}{12\cdots 24}a^{6}-\frac{19\cdots 63}{55\cdots 32}a^{5}-\frac{22\cdots 15}{55\cdots 32}a^{4}-\frac{14\cdots 79}{18\cdots 44}a^{3}+\frac{72\cdots 33}{27\cdots 16}a^{2}+\frac{12\cdots 29}{27\cdots 16}a+\frac{47\cdots 97}{27\cdots 16}$, $\frac{12\cdots 79}{55\cdots 32}a^{10}-\frac{53\cdots 83}{55\cdots 32}a^{9}-\frac{84\cdots 41}{55\cdots 32}a^{8}+\frac{13\cdots 27}{61\cdots 48}a^{7}+\frac{66\cdots 05}{12\cdots 24}a^{6}+\frac{23\cdots 09}{55\cdots 32}a^{5}-\frac{36\cdots 43}{55\cdots 32}a^{4}-\frac{18\cdots 51}{18\cdots 44}a^{3}+\frac{63\cdots 69}{27\cdots 16}a^{2}+\frac{22\cdots 45}{27\cdots 16}a+\frac{10\cdots 05}{27\cdots 16}$, $\frac{12\cdots 69}{55\cdots 32}a^{10}+\frac{41\cdots 15}{55\cdots 32}a^{9}-\frac{68\cdots 63}{55\cdots 32}a^{8}-\frac{21\cdots 15}{61\cdots 48}a^{7}+\frac{38\cdots 27}{12\cdots 24}a^{6}+\frac{50\cdots 83}{55\cdots 32}a^{5}-\frac{15\cdots 57}{55\cdots 32}a^{4}-\frac{17\cdots 45}{18\cdots 44}a^{3}+\frac{10\cdots 59}{27\cdots 16}a^{2}+\frac{97\cdots 23}{27\cdots 16}a+\frac{40\cdots 39}{27\cdots 16}$, $\frac{13\cdots 79}{55\cdots 32}a^{10}+\frac{96\cdots 05}{55\cdots 32}a^{9}-\frac{74\cdots 69}{55\cdots 32}a^{8}-\frac{36\cdots 25}{61\cdots 48}a^{7}+\frac{21\cdots 97}{12\cdots 24}a^{6}+\frac{56\cdots 93}{55\cdots 32}a^{5}+\frac{85\cdots 25}{55\cdots 32}a^{4}+\frac{22\cdots 89}{18\cdots 44}a^{3}+\frac{14\cdots 29}{27\cdots 16}a^{2}+\frac{25\cdots 53}{27\cdots 16}a+\frac{10\cdots 45}{27\cdots 16}$, $\frac{41\cdots 86}{34\cdots 27}a^{10}-\frac{26\cdots 55}{34\cdots 27}a^{9}-\frac{18\cdots 65}{34\cdots 27}a^{8}-\frac{39\cdots 21}{38\cdots 03}a^{7}+\frac{92\cdots 00}{80\cdots 89}a^{6}+\frac{21\cdots 17}{34\cdots 27}a^{5}-\frac{32\cdots 74}{34\cdots 27}a^{4}+\frac{29\cdots 18}{11\cdots 09}a^{3}+\frac{12\cdots 79}{34\cdots 27}a^{2}-\frac{10\cdots 49}{34\cdots 27}a-\frac{25\cdots 39}{34\cdots 27}$
|
| |
| Regulator: | \( 306439634.482 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{3}\cdot(2\pi)^{4}\cdot 306439634.482 \cdot 1}{2\cdot\sqrt{243920281203464276606976}}\cr\approx \mathstrut & 3.86812450437 \end{aligned}\] (assuming GRH)
Galois group
$\PSL(2,11)$ (as 11T5):
| A non-solvable group of order 660 |
| The 8 conjugacy class representatives for $\PSL(2,11)$ |
| Character table for $\PSL(2,11)$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Degree 12 sibling: | 12.0.140498081973195423325618176.2 |
| Arithmetically equivalent sibling: | 11.3.243920281203464276606976.4 |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/padicField/5.5.0.1}{5} }^{2}{,}\,{\href{/padicField/5.1.0.1}{1} }$ | ${\href{/padicField/7.5.0.1}{5} }^{2}{,}\,{\href{/padicField/7.1.0.1}{1} }$ | R | ${\href{/padicField/13.11.0.1}{11} }$ | ${\href{/padicField/17.5.0.1}{5} }^{2}{,}\,{\href{/padicField/17.1.0.1}{1} }$ | ${\href{/padicField/19.6.0.1}{6} }{,}\,{\href{/padicField/19.3.0.1}{3} }{,}\,{\href{/padicField/19.2.0.1}{2} }$ | ${\href{/padicField/23.3.0.1}{3} }^{3}{,}\,{\href{/padicField/23.1.0.1}{1} }^{2}$ | ${\href{/padicField/29.5.0.1}{5} }^{2}{,}\,{\href{/padicField/29.1.0.1}{1} }$ | ${\href{/padicField/31.11.0.1}{11} }$ | ${\href{/padicField/37.5.0.1}{5} }^{2}{,}\,{\href{/padicField/37.1.0.1}{1} }$ | ${\href{/padicField/41.5.0.1}{5} }^{2}{,}\,{\href{/padicField/41.1.0.1}{1} }$ | ${\href{/padicField/43.6.0.1}{6} }{,}\,{\href{/padicField/43.3.0.1}{3} }{,}\,{\href{/padicField/43.2.0.1}{2} }$ | ${\href{/padicField/47.5.0.1}{5} }^{2}{,}\,{\href{/padicField/47.1.0.1}{1} }$ | ${\href{/padicField/53.3.0.1}{3} }^{3}{,}\,{\href{/padicField/53.1.0.1}{1} }^{2}$ | ${\href{/padicField/59.5.0.1}{5} }^{2}{,}\,{\href{/padicField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.2.3a1.1 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $$[3]$$ |
| 2.1.3.2a1.1 | $x^{3} + 2$ | $3$ | $1$ | $2$ | $S_3$ | $$[\ ]_{3}^{2}$$ | |
| 2.1.6.11a1.2 | $x^{6} + 10$ | $6$ | $1$ | $11$ | $D_{6}$ | $$[3]_{3}^{2}$$ | |
|
\(3\)
| 3.1.2.1a1.2 | $x^{2} + 6$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
| 3.3.1.0a1.1 | $x^{3} + 2 x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ | |
| 3.3.2.3a1.1 | $x^{6} + 4 x^{4} + 2 x^{3} + 4 x^{2} + 7 x + 1$ | $2$ | $3$ | $3$ | $C_6$ | $$[\ ]_{2}^{3}$$ | |
|
\(11\)
| 11.1.11.16a2.1 | $x^{11} + 22 x^{6} + 11$ | $11$ | $1$ | $16$ | $C_{11}:C_5$ | $$[\frac{8}{5}]_{5}$$ |