Properties

Label 11.3.243...976.5
Degree $11$
Signature $[3, 4]$
Discriminant $2.439\times 10^{23}$
Root discriminant \(133.69\)
Ramified primes $2,3,11$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $\PSL(2,11)$ (as 11T5)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Normalized defining polynomial

Copy content comment:Define the number field
 
Copy content sage:x = polygen(QQ); K.<a> = NumberField(x^11 - 44*x^9 - 110*x^8 + 902*x^7 + 1056*x^6 - 7414*x^5 + 16808*x^4 + 42515*x^3 - 223476*x^2 - 743820*x - 344186)
 
Copy content gp:K = bnfinit(y^11 - 44*y^9 - 110*y^8 + 902*y^7 + 1056*y^6 - 7414*y^5 + 16808*y^4 + 42515*y^3 - 223476*y^2 - 743820*y - 344186, 1)
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^11 - 44*x^9 - 110*x^8 + 902*x^7 + 1056*x^6 - 7414*x^5 + 16808*x^4 + 42515*x^3 - 223476*x^2 - 743820*x - 344186);
 
Copy content oscar:Qx, x = polynomial_ring(QQ); K, a = number_field(x^11 - 44*x^9 - 110*x^8 + 902*x^7 + 1056*x^6 - 7414*x^5 + 16808*x^4 + 42515*x^3 - 223476*x^2 - 743820*x - 344186)
 

\( x^{11} - 44 x^{9} - 110 x^{8} + 902 x^{7} + 1056 x^{6} - 7414 x^{5} + 16808 x^{4} + 42515 x^{3} + \cdots - 344186 \) Copy content Toggle raw display

Copy content comment:Defining polynomial
 
Copy content sage:K.defining_polynomial()
 
Copy content gp:K.pol
 
Copy content magma:DefiningPolynomial(K);
 
Copy content oscar:defining_polynomial(K)
 

Invariants

Degree:  $11$
Copy content comment:Degree over Q
 
Copy content sage:K.degree()
 
Copy content gp:poldegree(K.pol)
 
Copy content magma:Degree(K);
 
Copy content oscar:degree(K)
 
Signature:  $[3, 4]$
Copy content comment:Signature
 
Copy content sage:K.signature()
 
Copy content gp:K.sign
 
Copy content magma:Signature(K);
 
Copy content oscar:signature(K)
 
Discriminant:   \(243920281203464276606976\) \(\medspace = 2^{16}\cdot 3^{4}\cdot 11^{16}\) Copy content Toggle raw display
Copy content comment:Discriminant
 
Copy content sage:K.disc()
 
Copy content gp:K.disc
 
Copy content magma:OK := Integers(K); Discriminant(OK);
 
Copy content oscar:OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(133.69\)
Copy content comment:Root discriminant
 
Copy content sage:(K.disc().abs())^(1./K.degree())
 
Copy content gp:abs(K.disc)^(1/poldegree(K.pol))
 
Copy content magma:Abs(Discriminant(OK))^(1/Degree(K));
 
Copy content oscar:OK = ring_of_integers(K); (1.0 * abs(discriminant(OK)))^(1/degree(K))
 
Galois root discriminant:  $2^{11/6}3^{1/2}11^{84/55}\approx 240.40284291526194$
Ramified primes:   \(2\), \(3\), \(11\) Copy content Toggle raw display
Copy content comment:Ramified primes
 
Copy content sage:K.disc().support()
 
Copy content gp:factor(abs(K.disc))[,1]~
 
Copy content magma:PrimeDivisors(Discriminant(OK));
 
Copy content oscar:prime_divisors(discriminant(OK))
 
Discriminant root field:  \(\Q\)
$\Aut(K/\Q)$:   $C_1$
Copy content comment:Autmorphisms
 
Copy content sage:K.automorphisms()
 
Copy content magma:Automorphisms(K);
 
Copy content oscar:automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.
This field has no CM subfields.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2}a^{9}-\frac{1}{2}a^{7}-\frac{1}{2}a^{5}-\frac{1}{2}a^{3}$, $\frac{1}{55\cdots 32}a^{10}-\frac{12\cdots 09}{55\cdots 32}a^{9}+\frac{17\cdots 13}{55\cdots 32}a^{8}+\frac{15\cdots 61}{61\cdots 48}a^{7}+\frac{16\cdots 55}{12\cdots 24}a^{6}-\frac{32\cdots 69}{55\cdots 32}a^{5}+\frac{13\cdots 31}{55\cdots 32}a^{4}+\frac{37\cdots 31}{18\cdots 44}a^{3}-\frac{66\cdots 41}{27\cdots 16}a^{2}-\frac{56\cdots 61}{27\cdots 16}a-\frac{37\cdots 49}{27\cdots 16}$ Copy content Toggle raw display

Copy content comment:Integral basis
 
Copy content sage:K.integral_basis()
 
Copy content gp:K.zk
 
Copy content magma:IntegralBasis(K);
 
Copy content oscar:basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$

Class group and class number

Ideal class group:  Trivial group, which has order $1$ (assuming GRH)
Copy content comment:Class group
 
Copy content sage:K.class_group().invariants()
 
Copy content gp:K.clgp
 
Copy content magma:ClassGroup(K);
 
Copy content oscar:class_group(K)
 
Narrow class group:  Trivial group, which has order $1$ (assuming GRH)
Copy content comment:Narrow class group
 
Copy content sage:K.narrow_class_group().invariants()
 
Copy content gp:bnfnarrow(K)
 
Copy content magma:NarrowClassGroup(K);
 

Unit group

Copy content comment:Unit group
 
Copy content sage:UK = K.unit_group()
 
Copy content magma:UK, fUK := UnitGroup(K);
 
Copy content oscar:UK, fUK = unit_group(OK)
 
Rank:  $6$
Copy content comment:Unit rank
 
Copy content sage:UK.rank()
 
Copy content gp:K.fu
 
Copy content magma:UnitRank(K);
 
Copy content oscar:rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
Copy content comment:Generator for roots of unity
 
Copy content sage:UK.torsion_generator()
 
Copy content gp:K.tu[2]
 
Copy content magma:K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Copy content oscar:torsion_units_generator(OK)
 
Fundamental units:   $\frac{70\cdots 56}{11\cdots 09}a^{10}+\frac{25\cdots 57}{11\cdots 09}a^{9}-\frac{16\cdots 87}{11\cdots 09}a^{8}-\frac{17\cdots 92}{38\cdots 03}a^{7}+\frac{32\cdots 53}{26\cdots 63}a^{6}-\frac{32\cdots 56}{11\cdots 09}a^{5}-\frac{72\cdots 00}{11\cdots 09}a^{4}+\frac{18\cdots 20}{38\cdots 03}a^{3}+\frac{26\cdots 09}{11\cdots 09}a^{2}+\frac{32\cdots 78}{11\cdots 09}a+\frac{12\cdots 67}{11\cdots 09}$, $\frac{80\cdots 35}{55\cdots 32}a^{10}-\frac{88\cdots 91}{55\cdots 32}a^{9}-\frac{30\cdots 29}{55\cdots 32}a^{8}+\frac{31\cdots 31}{61\cdots 48}a^{7}+\frac{48\cdots 33}{12\cdots 24}a^{6}-\frac{19\cdots 63}{55\cdots 32}a^{5}-\frac{22\cdots 15}{55\cdots 32}a^{4}-\frac{14\cdots 79}{18\cdots 44}a^{3}+\frac{72\cdots 33}{27\cdots 16}a^{2}+\frac{12\cdots 29}{27\cdots 16}a+\frac{47\cdots 97}{27\cdots 16}$, $\frac{12\cdots 79}{55\cdots 32}a^{10}-\frac{53\cdots 83}{55\cdots 32}a^{9}-\frac{84\cdots 41}{55\cdots 32}a^{8}+\frac{13\cdots 27}{61\cdots 48}a^{7}+\frac{66\cdots 05}{12\cdots 24}a^{6}+\frac{23\cdots 09}{55\cdots 32}a^{5}-\frac{36\cdots 43}{55\cdots 32}a^{4}-\frac{18\cdots 51}{18\cdots 44}a^{3}+\frac{63\cdots 69}{27\cdots 16}a^{2}+\frac{22\cdots 45}{27\cdots 16}a+\frac{10\cdots 05}{27\cdots 16}$, $\frac{12\cdots 69}{55\cdots 32}a^{10}+\frac{41\cdots 15}{55\cdots 32}a^{9}-\frac{68\cdots 63}{55\cdots 32}a^{8}-\frac{21\cdots 15}{61\cdots 48}a^{7}+\frac{38\cdots 27}{12\cdots 24}a^{6}+\frac{50\cdots 83}{55\cdots 32}a^{5}-\frac{15\cdots 57}{55\cdots 32}a^{4}-\frac{17\cdots 45}{18\cdots 44}a^{3}+\frac{10\cdots 59}{27\cdots 16}a^{2}+\frac{97\cdots 23}{27\cdots 16}a+\frac{40\cdots 39}{27\cdots 16}$, $\frac{13\cdots 79}{55\cdots 32}a^{10}+\frac{96\cdots 05}{55\cdots 32}a^{9}-\frac{74\cdots 69}{55\cdots 32}a^{8}-\frac{36\cdots 25}{61\cdots 48}a^{7}+\frac{21\cdots 97}{12\cdots 24}a^{6}+\frac{56\cdots 93}{55\cdots 32}a^{5}+\frac{85\cdots 25}{55\cdots 32}a^{4}+\frac{22\cdots 89}{18\cdots 44}a^{3}+\frac{14\cdots 29}{27\cdots 16}a^{2}+\frac{25\cdots 53}{27\cdots 16}a+\frac{10\cdots 45}{27\cdots 16}$, $\frac{41\cdots 86}{34\cdots 27}a^{10}-\frac{26\cdots 55}{34\cdots 27}a^{9}-\frac{18\cdots 65}{34\cdots 27}a^{8}-\frac{39\cdots 21}{38\cdots 03}a^{7}+\frac{92\cdots 00}{80\cdots 89}a^{6}+\frac{21\cdots 17}{34\cdots 27}a^{5}-\frac{32\cdots 74}{34\cdots 27}a^{4}+\frac{29\cdots 18}{11\cdots 09}a^{3}+\frac{12\cdots 79}{34\cdots 27}a^{2}-\frac{10\cdots 49}{34\cdots 27}a-\frac{25\cdots 39}{34\cdots 27}$ Copy content Toggle raw display (assuming GRH)
Copy content comment:Fundamental units
 
Copy content sage:UK.fundamental_units()
 
Copy content gp:K.fu
 
Copy content magma:[K|fUK(g): g in Generators(UK)];
 
Copy content oscar:[K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 306439634.482 \) (assuming GRH)
Copy content comment:Regulator
 
Copy content sage:K.regulator()
 
Copy content gp:K.reg
 
Copy content magma:Regulator(K);
 
Copy content oscar:regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{3}\cdot(2\pi)^{4}\cdot 306439634.482 \cdot 1}{2\cdot\sqrt{243920281203464276606976}}\cr\approx \mathstrut & 3.86812450437 \end{aligned}\] (assuming GRH)

Copy content comment:Analytic class number formula
 
Copy content sage:# self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K.<a> = NumberField(x^11 - 44*x^9 - 110*x^8 + 902*x^7 + 1056*x^6 - 7414*x^5 + 16808*x^4 + 42515*x^3 - 223476*x^2 - 743820*x - 344186) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
Copy content gp:\\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^11 - 44*x^9 - 110*x^8 + 902*x^7 + 1056*x^6 - 7414*x^5 + 16808*x^4 + 42515*x^3 - 223476*x^2 - 743820*x - 344186, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
Copy content magma:/* self-contained Magma code snippet to compute the analytic class number formula */ Qx<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^11 - 44*x^9 - 110*x^8 + 902*x^7 + 1056*x^6 - 7414*x^5 + 16808*x^4 + 42515*x^3 - 223476*x^2 - 743820*x - 344186); OK := Integers(K); DK := Discriminant(OK); UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK); r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK); hK := #clK; wK := #TorsionSubgroup(UK); 2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
Copy content oscar:# self-contained Oscar code snippet to compute the analytic class number formula Qx, x = polynomial_ring(QQ); K, a = number_field(x^11 - 44*x^9 - 110*x^8 + 902*x^7 + 1056*x^6 - 7414*x^5 + 16808*x^4 + 42515*x^3 - 223476*x^2 - 743820*x - 344186); OK = ring_of_integers(K); DK = discriminant(OK); UK, fUK = unit_group(OK); clK, fclK = class_group(OK); r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); hK = order(clK); wK = torsion_units_order(K); 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$\PSL(2,11)$ (as 11T5):

Copy content comment:Galois group
 
Copy content sage:K.galois_group(type='pari')
 
Copy content gp:polgalois(K.pol)
 
Copy content magma:G = GaloisGroup(K);
 
Copy content oscar:G, Gtx = galois_group(K); degree(K) > 1 ? (G, transitive_group_identification(G)) : (G, nothing)
 
A non-solvable group of order 660
The 8 conjugacy class representatives for $\PSL(2,11)$
Character table for $\PSL(2,11)$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.
Copy content comment:Intermediate fields
 
Copy content sage:K.subfields()[1:-1]
 
Copy content gp:L = nfsubfields(K); L[2..length(L)]
 
Copy content magma:L := Subfields(K); L[2..#L];
 
Copy content oscar:subfields(K)[2:end-1]
 

Sibling fields

Degree 12 sibling: 12.0.140498081973195423325618176.2
Arithmetically equivalent sibling: 11.3.243920281203464276606976.4
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R ${\href{/padicField/5.5.0.1}{5} }^{2}{,}\,{\href{/padicField/5.1.0.1}{1} }$ ${\href{/padicField/7.5.0.1}{5} }^{2}{,}\,{\href{/padicField/7.1.0.1}{1} }$ R ${\href{/padicField/13.11.0.1}{11} }$ ${\href{/padicField/17.5.0.1}{5} }^{2}{,}\,{\href{/padicField/17.1.0.1}{1} }$ ${\href{/padicField/19.6.0.1}{6} }{,}\,{\href{/padicField/19.3.0.1}{3} }{,}\,{\href{/padicField/19.2.0.1}{2} }$ ${\href{/padicField/23.3.0.1}{3} }^{3}{,}\,{\href{/padicField/23.1.0.1}{1} }^{2}$ ${\href{/padicField/29.5.0.1}{5} }^{2}{,}\,{\href{/padicField/29.1.0.1}{1} }$ ${\href{/padicField/31.11.0.1}{11} }$ ${\href{/padicField/37.5.0.1}{5} }^{2}{,}\,{\href{/padicField/37.1.0.1}{1} }$ ${\href{/padicField/41.5.0.1}{5} }^{2}{,}\,{\href{/padicField/41.1.0.1}{1} }$ ${\href{/padicField/43.6.0.1}{6} }{,}\,{\href{/padicField/43.3.0.1}{3} }{,}\,{\href{/padicField/43.2.0.1}{2} }$ ${\href{/padicField/47.5.0.1}{5} }^{2}{,}\,{\href{/padicField/47.1.0.1}{1} }$ ${\href{/padicField/53.3.0.1}{3} }^{3}{,}\,{\href{/padicField/53.1.0.1}{1} }^{2}$ ${\href{/padicField/59.5.0.1}{5} }^{2}{,}\,{\href{/padicField/59.1.0.1}{1} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

Copy content comment:Frobenius cycle types
 
Copy content sage:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
Copy content gp:\\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
Copy content magma:// to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Magma: p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
Copy content oscar:# to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.1.2.3a1.1$x^{2} + 2$$2$$1$$3$$C_2$$$[3]$$
2.1.3.2a1.1$x^{3} + 2$$3$$1$$2$$S_3$$$[\ ]_{3}^{2}$$
2.1.6.11a1.2$x^{6} + 10$$6$$1$$11$$D_{6}$$$[3]_{3}^{2}$$
\(3\) Copy content Toggle raw display 3.1.2.1a1.2$x^{2} + 6$$2$$1$$1$$C_2$$$[\ ]_{2}$$
3.3.1.0a1.1$x^{3} + 2 x + 1$$1$$3$$0$$C_3$$$[\ ]^{3}$$
3.3.2.3a1.1$x^{6} + 4 x^{4} + 2 x^{3} + 4 x^{2} + 7 x + 1$$2$$3$$3$$C_6$$$[\ ]_{2}^{3}$$
\(11\) Copy content Toggle raw display 11.1.11.16a2.1$x^{11} + 22 x^{6} + 11$$11$$1$$16$$C_{11}:C_5$$$[\frac{8}{5}]_{5}$$

Spectrum of ring of integers

(0)(0)(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43)(47)(53)(59)