Normalized defining polynomial
\( x^{11} - 22x^{9} - 66x^{8} + 1276x^{6} + 5038x^{5} + 11264x^{4} + 14168x^{3} + 2156x^{2} - 7744x + 224 \)
Invariants
| Degree: | $11$ |
| |
| Signature: | $[3, 4]$ |
| |
| Discriminant: |
\(243920281203464276606976\)
\(\medspace = 2^{16}\cdot 3^{4}\cdot 11^{16}\)
|
| |
| Root discriminant: | \(133.69\) |
| |
| Galois root discriminant: | $2^{11/6}3^{1/2}11^{84/55}\approx 240.40284291526194$ | ||
| Ramified primes: |
\(2\), \(3\), \(11\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_1$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2}a^{6}$, $\frac{1}{2}a^{7}$, $\frac{1}{2}a^{8}$, $\frac{1}{4}a^{9}-\frac{1}{2}a^{3}$, $\frac{1}{42\cdots 64}a^{10}-\frac{90384852556237}{21\cdots 32}a^{9}+\frac{47983806308511}{21\cdots 32}a^{8}+\frac{393521179187369}{21\cdots 32}a^{7}+\frac{43182459194053}{10\cdots 66}a^{6}+\frac{478426516078439}{10\cdots 66}a^{5}-\frac{950665382024281}{21\cdots 32}a^{4}+\frac{61827835156621}{10\cdots 66}a^{3}-\frac{12485105883792}{529618963817633}a^{2}-\frac{45581671505467}{10\cdots 66}a+\frac{26007605918769}{529618963817633}$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $2$ |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | Trivial group, which has order $1$ (assuming GRH) |
|
Unit group
| Rank: | $6$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{10\cdots 29}{42\cdots 64}a^{10}+\frac{13\cdots 74}{529618963817633}a^{9}-\frac{27\cdots 51}{21\cdots 32}a^{8}-\frac{15\cdots 57}{21\cdots 32}a^{7}+\frac{31\cdots 55}{529618963817633}a^{6}+\frac{74\cdots 17}{10\cdots 66}a^{5}+\frac{66\cdots 11}{21\cdots 32}a^{4}+\frac{31\cdots 62}{529618963817633}a^{3}+\frac{89\cdots 23}{529618963817633}a^{2}-\frac{35\cdots 37}{10\cdots 66}a+\frac{51\cdots 75}{529618963817633}$, $\frac{127566538935193}{42\cdots 64}a^{10}-\frac{131237144846368}{529618963817633}a^{9}-\frac{174959089096337}{21\cdots 32}a^{8}+\frac{65\cdots 53}{21\cdots 32}a^{7}+\frac{17\cdots 93}{529618963817633}a^{6}+\frac{221931404629305}{10\cdots 66}a^{5}-\frac{14\cdots 17}{21\cdots 32}a^{4}-\frac{11\cdots 05}{529618963817633}a^{3}-\frac{46\cdots 15}{529618963817633}a^{2}+\frac{13\cdots 05}{10\cdots 66}a-\frac{18\cdots 61}{529618963817633}$, $\frac{45127455143177}{10\cdots 66}a^{10}-\frac{233657106780186}{529618963817633}a^{9}+\frac{391612728425114}{529618963817633}a^{8}+\frac{728367014753835}{10\cdots 66}a^{7}+\frac{78\cdots 27}{529618963817633}a^{6}-\frac{14\cdots 62}{529618963817633}a^{5}-\frac{67\cdots 33}{529618963817633}a^{4}-\frac{22\cdots 65}{529618963817633}a^{3}-\frac{49\cdots 54}{529618963817633}a^{2}-\frac{24\cdots 14}{529618963817633}a+\frac{30\cdots 89}{529618963817633}$, $\frac{32\cdots 21}{42\cdots 64}a^{10}-\frac{10\cdots 44}{529618963817633}a^{9}-\frac{84\cdots 51}{21\cdots 32}a^{8}+\frac{10\cdots 55}{21\cdots 32}a^{7}+\frac{34\cdots 57}{529618963817633}a^{6}-\frac{32\cdots 09}{10\cdots 66}a^{5}-\frac{42\cdots 05}{21\cdots 32}a^{4}-\frac{20\cdots 73}{529618963817633}a^{3}-\frac{51\cdots 36}{529618963817633}a^{2}+\frac{21\cdots 39}{10\cdots 66}a-\frac{31\cdots 51}{529618963817633}$, $\frac{212129655084324}{529618963817633}a^{10}-\frac{724316463296915}{10\cdots 66}a^{9}-\frac{81\cdots 63}{10\cdots 66}a^{8}-\frac{14\cdots 53}{10\cdots 66}a^{7}+\frac{12\cdots 97}{529618963817633}a^{6}+\frac{25\cdots 61}{529618963817633}a^{5}+\frac{63\cdots 07}{529618963817633}a^{4}+\frac{12\cdots 34}{529618963817633}a^{3}+\frac{75\cdots 60}{529618963817633}a^{2}-\frac{93\cdots 47}{529618963817633}a+\frac{25\cdots 19}{529618963817633}$, $\frac{15\cdots 87}{42\cdots 64}a^{10}+\frac{19\cdots 25}{10\cdots 66}a^{9}+\frac{15\cdots 59}{21\cdots 32}a^{8}-\frac{65\cdots 19}{21\cdots 32}a^{7}-\frac{97\cdots 08}{529618963817633}a^{6}-\frac{56\cdots 81}{10\cdots 66}a^{5}-\frac{21\cdots 59}{21\cdots 32}a^{4}-\frac{54\cdots 20}{529618963817633}a^{3}-\frac{28\cdots 22}{529618963817633}a^{2}+\frac{58\cdots 17}{10\cdots 66}a-\frac{85\cdots 35}{529618963817633}$
|
| |
| Regulator: | \( 306439634.482 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{3}\cdot(2\pi)^{4}\cdot 306439634.482 \cdot 1}{2\cdot\sqrt{243920281203464276606976}}\cr\approx \mathstrut & 3.86812450437 \end{aligned}\] (assuming GRH)
Galois group
$\PSL(2,11)$ (as 11T5):
| A non-solvable group of order 660 |
| The 8 conjugacy class representatives for $\PSL(2,11)$ |
| Character table for $\PSL(2,11)$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Degree 12 sibling: | 12.0.140498081973195423325618176.2 |
| Arithmetically equivalent sibling: | 11.3.243920281203464276606976.5 |
| Minimal sibling: | 11.3.243920281203464276606976.5 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/padicField/5.5.0.1}{5} }^{2}{,}\,{\href{/padicField/5.1.0.1}{1} }$ | ${\href{/padicField/7.5.0.1}{5} }^{2}{,}\,{\href{/padicField/7.1.0.1}{1} }$ | R | ${\href{/padicField/13.11.0.1}{11} }$ | ${\href{/padicField/17.5.0.1}{5} }^{2}{,}\,{\href{/padicField/17.1.0.1}{1} }$ | ${\href{/padicField/19.6.0.1}{6} }{,}\,{\href{/padicField/19.3.0.1}{3} }{,}\,{\href{/padicField/19.2.0.1}{2} }$ | ${\href{/padicField/23.3.0.1}{3} }^{3}{,}\,{\href{/padicField/23.1.0.1}{1} }^{2}$ | ${\href{/padicField/29.5.0.1}{5} }^{2}{,}\,{\href{/padicField/29.1.0.1}{1} }$ | ${\href{/padicField/31.11.0.1}{11} }$ | ${\href{/padicField/37.5.0.1}{5} }^{2}{,}\,{\href{/padicField/37.1.0.1}{1} }$ | ${\href{/padicField/41.5.0.1}{5} }^{2}{,}\,{\href{/padicField/41.1.0.1}{1} }$ | ${\href{/padicField/43.6.0.1}{6} }{,}\,{\href{/padicField/43.3.0.1}{3} }{,}\,{\href{/padicField/43.2.0.1}{2} }$ | ${\href{/padicField/47.5.0.1}{5} }^{2}{,}\,{\href{/padicField/47.1.0.1}{1} }$ | ${\href{/padicField/53.3.0.1}{3} }^{3}{,}\,{\href{/padicField/53.1.0.1}{1} }^{2}$ | ${\href{/padicField/59.5.0.1}{5} }^{2}{,}\,{\href{/padicField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.2.3a1.2 | $x^{2} + 10$ | $2$ | $1$ | $3$ | $C_2$ | $$[3]$$ |
| 2.1.3.2a1.1 | $x^{3} + 2$ | $3$ | $1$ | $2$ | $S_3$ | $$[\ ]_{3}^{2}$$ | |
| 2.1.6.11a1.1 | $x^{6} + 2$ | $6$ | $1$ | $11$ | $D_{6}$ | $$[3]_{3}^{2}$$ | |
|
\(3\)
| 3.1.2.1a1.2 | $x^{2} + 6$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
| 3.3.1.0a1.1 | $x^{3} + 2 x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ | |
| 3.3.2.3a1.1 | $x^{6} + 4 x^{4} + 2 x^{3} + 4 x^{2} + 7 x + 1$ | $2$ | $3$ | $3$ | $C_6$ | $$[\ ]_{2}^{3}$$ | |
|
\(11\)
| 11.1.11.16a2.1 | $x^{11} + 22 x^{6} + 11$ | $11$ | $1$ | $16$ | $C_{11}:C_5$ | $$[\frac{8}{5}]_{5}$$ |