Normalized defining polynomial
\( x^{11} + 33 x^{9} - 110 x^{8} + 363 x^{7} - 1980 x^{6} + 1463 x^{5} - 6666 x^{4} + 5016 x^{3} + \cdots + 13392 \)
Invariants
| Degree: | $11$ |
| |
| Signature: | $[3, 4]$ |
| |
| Discriminant: |
\(243920281203464276606976\)
\(\medspace = 2^{16}\cdot 3^{4}\cdot 11^{16}\)
|
| |
| Root discriminant: | \(133.69\) |
| |
| Galois root discriminant: | $2^{11/6}3^{1/2}11^{84/55}\approx 240.40284291526194$ | ||
| Ramified primes: |
\(2\), \(3\), \(11\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_1$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{6}a^{5}-\frac{1}{2}a^{4}+\frac{1}{6}a^{3}-\frac{1}{2}a^{2}-\frac{1}{3}a$, $\frac{1}{6}a^{6}-\frac{1}{3}a^{4}+\frac{1}{6}a^{2}$, $\frac{1}{6}a^{7}-\frac{1}{2}a^{3}+\frac{1}{3}a$, $\frac{1}{18}a^{8}+\frac{1}{6}a^{4}-\frac{2}{9}a^{2}$, $\frac{1}{324}a^{9}-\frac{2}{81}a^{8}-\frac{1}{12}a^{7}+\frac{1}{18}a^{6}+\frac{1}{108}a^{5}-\frac{11}{27}a^{4}+\frac{95}{324}a^{3}+\frac{43}{162}a^{2}-\frac{1}{3}a+\frac{1}{3}$, $\frac{1}{87342833914416}a^{10}-\frac{42280883975}{43671416957208}a^{9}+\frac{2239065379813}{87342833914416}a^{8}-\frac{191216611219}{2426189830956}a^{7}+\frac{1260652636465}{29114277971472}a^{6}+\frac{361409502427}{14557138985736}a^{5}-\frac{18014728417741}{87342833914416}a^{4}+\frac{4207656291439}{21835708478604}a^{3}-\frac{387045109289}{10917854239302}a^{2}+\frac{399898274053}{808729943652}a-\frac{201381262927}{404364971826}$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $2$, $3$ |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | Trivial group, which has order $1$ (assuming GRH) |
|
Unit group
| Rank: | $6$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{417164563213}{21835708478604}a^{10}-\frac{154074380353}{5458927119651}a^{9}+\frac{4097236416229}{21835708478604}a^{8}-\frac{262380253771}{606547457739}a^{7}-\frac{12420110697269}{7278569492868}a^{6}-\frac{2380137444637}{1819642373217}a^{5}-\frac{188876829570001}{21835708478604}a^{4}+\frac{23728744732987}{5458927119651}a^{3}-\frac{213217709002013}{10917854239302}a^{2}-\frac{1630513711547}{202182485913}a+\frac{5052237754159}{202182485913}$, $\frac{6292788466213}{43671416957208}a^{10}+\frac{10681312141141}{21835708478604}a^{9}+\frac{262347310408585}{43671416957208}a^{8}-\frac{2007764967692}{606547457739}a^{7}+\frac{399384076890733}{14557138985736}a^{6}-\frac{20\cdots 45}{7278569492868}a^{5}+\frac{14\cdots 87}{43671416957208}a^{4}-\frac{24\cdots 97}{5458927119651}a^{3}+\frac{76\cdots 64}{5458927119651}a^{2}+\frac{353824708695457}{404364971826}a-\frac{282580026582310}{202182485913}$, $\frac{71\cdots 55}{43671416957208}a^{10}+\frac{12\cdots 13}{21835708478604}a^{9}+\frac{33\cdots 27}{43671416957208}a^{8}+\frac{11\cdots 41}{1213094915478}a^{7}+\frac{13\cdots 83}{14557138985736}a^{6}+\frac{56\cdots 91}{7278569492868}a^{5}+\frac{11\cdots 25}{43671416957208}a^{4}-\frac{14\cdots 21}{10917854239302}a^{3}+\frac{19\cdots 84}{5458927119651}a^{2}+\frac{10\cdots 23}{404364971826}a-\frac{12\cdots 94}{202182485913}$, $\frac{6679793733583}{43671416957208}a^{10}+\frac{11995952783023}{21835708478604}a^{9}+\frac{258921977692723}{43671416957208}a^{8}+\frac{4667404984093}{606547457739}a^{7}+\frac{913187629121059}{14557138985736}a^{6}+\frac{83017574432407}{7278569492868}a^{5}+\frac{75\cdots 29}{43671416957208}a^{4}-\frac{649368153624503}{10917854239302}a^{3}+\frac{11\cdots 18}{5458927119651}a^{2}+\frac{79278051098221}{404364971826}a-\frac{84852100573516}{202182485913}$, $\frac{226894020678473}{87342833914416}a^{10}-\frac{31\cdots 25}{43671416957208}a^{9}+\frac{26\cdots 33}{87342833914416}a^{8}-\frac{14\cdots 91}{1213094915478}a^{7}+\frac{11\cdots 09}{29114277971472}a^{6}-\frac{70\cdots 87}{14557138985736}a^{5}+\frac{11\cdots 55}{87342833914416}a^{4}-\frac{58\cdots 51}{5458927119651}a^{3}+\frac{78\cdots 89}{10917854239302}a^{2}+\frac{16\cdots 65}{808729943652}a-\frac{92\cdots 23}{404364971826}$, $\frac{69\cdots 73}{21835708478604}a^{10}-\frac{20\cdots 96}{5458927119651}a^{9}+\frac{20\cdots 03}{21835708478604}a^{8}-\frac{26\cdots 43}{606547457739}a^{7}+\frac{92\cdots 75}{7278569492868}a^{6}-\frac{10\cdots 34}{1819642373217}a^{5}+\frac{12\cdots 97}{21835708478604}a^{4}-\frac{13\cdots 77}{5458927119651}a^{3}-\frac{11\cdots 13}{10917854239302}a^{2}+\frac{16\cdots 22}{202182485913}a+\frac{32\cdots 53}{202182485913}$
|
| |
| Regulator: | \( 2824285089.59 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{3}\cdot(2\pi)^{4}\cdot 2824285089.59 \cdot 1}{2\cdot\sqrt{243920281203464276606976}}\cr\approx \mathstrut & 35.6503700340 \end{aligned}\] (assuming GRH)
Galois group
$\PSL(2,11)$ (as 11T5):
| A non-solvable group of order 660 |
| The 8 conjugacy class representatives for $\PSL(2,11)$ |
| Character table for $\PSL(2,11)$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Degree 12 sibling: | 12.0.140498081973195423325618176.3 |
| Arithmetically equivalent sibling: | 11.3.243920281203464276606976.6 |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/padicField/5.6.0.1}{6} }{,}\,{\href{/padicField/5.3.0.1}{3} }{,}\,{\href{/padicField/5.2.0.1}{2} }$ | ${\href{/padicField/7.5.0.1}{5} }^{2}{,}\,{\href{/padicField/7.1.0.1}{1} }$ | R | ${\href{/padicField/13.5.0.1}{5} }^{2}{,}\,{\href{/padicField/13.1.0.1}{1} }$ | ${\href{/padicField/17.5.0.1}{5} }^{2}{,}\,{\href{/padicField/17.1.0.1}{1} }$ | ${\href{/padicField/19.6.0.1}{6} }{,}\,{\href{/padicField/19.3.0.1}{3} }{,}\,{\href{/padicField/19.2.0.1}{2} }$ | ${\href{/padicField/23.5.0.1}{5} }^{2}{,}\,{\href{/padicField/23.1.0.1}{1} }$ | ${\href{/padicField/29.5.0.1}{5} }^{2}{,}\,{\href{/padicField/29.1.0.1}{1} }$ | ${\href{/padicField/31.5.0.1}{5} }^{2}{,}\,{\href{/padicField/31.1.0.1}{1} }$ | ${\href{/padicField/37.3.0.1}{3} }^{3}{,}\,{\href{/padicField/37.1.0.1}{1} }^{2}$ | ${\href{/padicField/41.5.0.1}{5} }^{2}{,}\,{\href{/padicField/41.1.0.1}{1} }$ | ${\href{/padicField/43.5.0.1}{5} }^{2}{,}\,{\href{/padicField/43.1.0.1}{1} }$ | ${\href{/padicField/47.5.0.1}{5} }^{2}{,}\,{\href{/padicField/47.1.0.1}{1} }$ | ${\href{/padicField/53.5.0.1}{5} }^{2}{,}\,{\href{/padicField/53.1.0.1}{1} }$ | ${\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.3.0.1}{3} }{,}\,{\href{/padicField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.2.3a1.1 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $$[3]$$ |
| 2.1.3.2a1.1 | $x^{3} + 2$ | $3$ | $1$ | $2$ | $S_3$ | $$[\ ]_{3}^{2}$$ | |
| 2.1.6.11a1.2 | $x^{6} + 10$ | $6$ | $1$ | $11$ | $D_{6}$ | $$[3]_{3}^{2}$$ | |
|
\(3\)
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| 3.1.2.1a1.2 | $x^{2} + 6$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 3.1.2.1a1.2 | $x^{2} + 6$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 3.1.2.1a1.2 | $x^{2} + 6$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 3.1.2.1a1.2 | $x^{2} + 6$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
|
\(11\)
| 11.1.11.16a2.1 | $x^{11} + 22 x^{6} + 11$ | $11$ | $1$ | $16$ | $C_{11}:C_5$ | $$[\frac{8}{5}]_{5}$$ |