Normalized defining polynomial
\( x^{11} - 154 x^{9} - 308 x^{8} + 9009 x^{7} + 35420 x^{6} - 217360 x^{5} - 1721808 x^{4} - 3611960 x^{3} - 534688 x^{2} + 4777344 x + 1034752 \)
Invariants
| Degree: | $11$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[3, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(166619625871733889625740432900096=2^{22}\cdot 3^{10}\cdot 11^{20}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $849.67$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{12} a^{6} - \frac{1}{12} a^{5} - \frac{1}{12} a^{4} + \frac{5}{12} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{12} a^{7} - \frac{1}{6} a^{5} - \frac{1}{6} a^{4} + \frac{1}{12} a^{3} - \frac{1}{6} a^{2} + \frac{1}{3}$, $\frac{1}{24} a^{8} + \frac{1}{12} a^{5} - \frac{1}{24} a^{4} - \frac{5}{12} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{96} a^{9} - \frac{1}{48} a^{7} - \frac{1}{24} a^{6} - \frac{5}{32} a^{5} + \frac{1}{8} a^{4} - \frac{5}{12} a^{3} - \frac{1}{2} a^{2} + \frac{1}{12} a - \frac{1}{3}$, $\frac{1}{61928710574832384} a^{10} - \frac{18166356691835}{15482177643708096} a^{9} - \frac{27164177033351}{10321451762472064} a^{8} + \frac{281988734456705}{15482177643708096} a^{7} + \frac{1571252554953793}{61928710574832384} a^{6} + \frac{8981723349323}{133467048652656} a^{5} + \frac{262911418218755}{1290181470309008} a^{4} + \frac{423254522981357}{1290181470309008} a^{3} + \frac{1217872621175201}{7741088821854048} a^{2} + \frac{29102653804190}{241909025682939} a + \frac{35047755050865}{161272683788626}$
Class group and class number
$C_{11}$, which has order $11$ (assuming GRH)
Unit group
| Rank: | $6$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1207733986040 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$A_{11}$ (as 11T7):
| A non-solvable group of order 19958400 |
| The 31 conjugacy class representatives for $A_{11}$ |
| Character table for $A_{11}$ is not computed |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.11.0.1}{11} }$ | ${\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.11.0.1}{11} }$ | ${\href{/LocalNumberField/19.11.0.1}{11} }$ | ${\href{/LocalNumberField/23.7.0.1}{7} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.7.0.1}{7} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.11.0.1}{11} }$ | ${\href{/LocalNumberField/37.7.0.1}{7} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.11.0.1}{11} }$ | ${\href{/LocalNumberField/43.9.0.1}{9} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.9.0.1}{9} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.4.10.3 | $x^{4} + 6 x^{2} - 9$ | $4$ | $1$ | $10$ | $D_{4}$ | $[2, 3, 7/2]$ | |
| 2.4.10.5 | $x^{4} - 6 x^{2} + 3$ | $4$ | $1$ | $10$ | $D_{4}$ | $[2, 3, 7/2]$ | |
| $3$ | 3.3.4.4 | $x^{3} + 3 x^{2} + 3$ | $3$ | $1$ | $4$ | $S_3$ | $[2]^{2}$ |
| 3.4.3.1 | $x^{4} + 3$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 3.4.3.2 | $x^{4} - 3$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| $11$ | 11.11.20.9 | $x^{11} - 11 x^{10} + 11$ | $11$ | $1$ | $20$ | $C_{11}$ | $[2]$ |