Properties

Label 11.3.16660083409...3936.2
Degree $11$
Signature $[3, 4]$
Discriminant $2^{16}\cdot 3^{4}\cdot 11^{12}$
Root discriminant $55.90$
Ramified primes $2, 3, 11$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $\PSL(2,11)$ (as 11T5)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1376, 2640, 528, -3168, -1188, 594, 484, 143, -44, -22, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^11 - 22*x^9 - 44*x^8 + 143*x^7 + 484*x^6 + 594*x^5 - 1188*x^4 - 3168*x^3 + 528*x^2 + 2640*x + 1376)
 
gp: K = bnfinit(x^11 - 22*x^9 - 44*x^8 + 143*x^7 + 484*x^6 + 594*x^5 - 1188*x^4 - 3168*x^3 + 528*x^2 + 2640*x + 1376, 1)
 

Normalized defining polynomial

\( x^{11} - 22 x^{9} - 44 x^{8} + 143 x^{7} + 484 x^{6} + 594 x^{5} - 1188 x^{4} - 3168 x^{3} + 528 x^{2} + 2640 x + 1376 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $11$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[3, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(16660083409839783936=2^{16}\cdot 3^{4}\cdot 11^{12}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $55.90$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 11$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{22} a^{6} - \frac{5}{22} a^{5} + \frac{2}{11} a^{4} + \frac{9}{22} a^{3} - \frac{7}{22} a^{2} + \frac{3}{11} a - \frac{5}{11}$, $\frac{1}{44} a^{7} - \frac{1}{44} a^{6} - \frac{5}{44} a^{5} + \frac{3}{44} a^{4} + \frac{9}{22} a^{3} - \frac{2}{11} a + \frac{1}{11}$, $\frac{1}{88} a^{8} - \frac{1}{88} a^{7} + \frac{1}{88} a^{6} + \frac{17}{88} a^{5} + \frac{5}{22} a^{4} - \frac{17}{44} a^{3} - \frac{7}{22} a^{2} + \frac{5}{11} a - \frac{2}{11}$, $\frac{1}{88} a^{9} - \frac{1}{44} a^{6} + \frac{5}{88} a^{5} - \frac{3}{44} a^{4} - \frac{1}{4} a^{3} - \frac{3}{11} a^{2} - \frac{1}{11} a + \frac{1}{11}$, $\frac{1}{71825072} a^{10} - \frac{17179}{4489067} a^{9} + \frac{18529}{35912536} a^{8} + \frac{47741}{17956268} a^{7} - \frac{1325001}{71825072} a^{6} - \frac{3385221}{17956268} a^{5} + \frac{8861529}{35912536} a^{4} - \frac{2343515}{17956268} a^{3} + \frac{1900342}{4489067} a^{2} - \frac{1642633}{4489067} a + \frac{1744933}{4489067}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $6$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 8505597.41689 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$\PSL(2,11)$ (as 11T5):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 660
The 8 conjugacy class representatives for $\PSL(2,11)$
Character table for $\PSL(2,11)$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.

Sibling fields

Degree 12 sibling: data not computed
Arithmetically equvalently sibling: 11.3.16660083409839783936.1

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ ${\href{/LocalNumberField/7.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ R ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ ${\href{/LocalNumberField/17.11.0.1}{11} }$ ${\href{/LocalNumberField/19.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ ${\href{/LocalNumberField/29.11.0.1}{11} }$ ${\href{/LocalNumberField/31.11.0.1}{11} }$ ${\href{/LocalNumberField/37.11.0.1}{11} }$ ${\href{/LocalNumberField/41.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ ${\href{/LocalNumberField/43.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ ${\href{/LocalNumberField/47.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ ${\href{/LocalNumberField/53.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/59.11.0.1}{11} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$$\Q_{2}$$x + 1$$1$$1$$0$Trivial$[\ ]$
2.2.2.2$x^{2} + 2 x - 2$$2$$1$$2$$C_2$$[2]$
2.2.3.4$x^{2} + 10$$2$$1$$3$$C_2$$[3]$
2.2.3.1$x^{2} + 14$$2$$1$$3$$C_2$$[3]$
2.4.8.3$x^{4} + 6 x^{2} + 4 x + 14$$4$$1$$8$$C_2^2$$[2, 3]$
$3$3.2.1.1$x^{2} - 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.3.0.1$x^{3} - x + 1$$1$$3$$0$$C_3$$[\ ]^{3}$
3.6.3.1$x^{6} - 6 x^{4} + 9 x^{2} - 27$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
$11$11.11.12.1$x^{11} + 88 x^{2} + 11$$11$$1$$12$$C_{11}:C_5$$[6/5]_{5}$