Normalized defining polynomial
\( x^{11} - 22 x^{9} - 11 x^{8} + 143 x^{7} + 143 x^{6} - 209 x^{5} - 1188 x^{4} - 3619 x^{3} - 4059 x^{2} + \cdots - 3486 \)
Invariants
| Degree: | $11$ |
| |
| Signature: | $[3, 4]$ |
| |
| Discriminant: |
\(11763130845074473216\)
\(\medspace = 2^{8}\cdot 11^{16}\)
|
| |
| Root discriminant: | \(54.16\) |
| |
| Galois root discriminant: | $2\cdot 11^{84/55}\approx 77.89698382370653$ | ||
| Ramified primes: |
\(2\), \(11\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_1$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3}a^{9}-\frac{1}{3}a^{8}-\frac{1}{3}a^{7}-\frac{1}{3}a^{4}-\frac{1}{3}a^{3}-\frac{1}{3}a^{2}+\frac{1}{3}a$, $\frac{1}{892268465877}a^{10}+\frac{105634823782}{892268465877}a^{9}+\frac{115467063307}{297422821959}a^{8}-\frac{27718931528}{892268465877}a^{7}+\frac{76553251057}{297422821959}a^{6}-\frac{31390975258}{892268465877}a^{5}-\frac{130557733147}{297422821959}a^{4}-\frac{135320001709}{297422821959}a^{3}-\frac{389363731681}{892268465877}a^{2}-\frac{225594330856}{892268465877}a+\frac{36296589622}{297422821959}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | Trivial group, which has order $1$ (assuming GRH) |
|
Unit group
| Rank: | $6$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{10753587575}{892268465877}a^{10}-\frac{22217020738}{892268465877}a^{9}-\frac{19859840107}{99140940653}a^{8}+\frac{213957922331}{892268465877}a^{7}+\frac{304169004449}{297422821959}a^{6}+\frac{117992656843}{892268465877}a^{5}-\frac{539079911020}{297422821959}a^{4}-\frac{3554658454630}{297422821959}a^{3}-\frac{18855550285094}{892268465877}a^{2}-\frac{12169954947812}{892268465877}a-\frac{3822358403545}{297422821959}$, $\frac{29779661713}{892268465877}a^{10}-\frac{79626280838}{892268465877}a^{9}-\frac{153426047557}{297422821959}a^{8}+\frac{962076937039}{892268465877}a^{7}+\frac{652282021447}{297422821959}a^{6}-\frac{1790905974670}{892268465877}a^{5}-\frac{292235847032}{99140940653}a^{4}-\frac{2847631466955}{99140940653}a^{3}-\frac{36125925463750}{892268465877}a^{2}-\frac{11829683135587}{892268465877}a-\frac{16829334274691}{297422821959}$, $\frac{130972212011}{892268465877}a^{10}-\frac{257634432190}{892268465877}a^{9}-\frac{791395064830}{297422821959}a^{8}+\frac{3172630440665}{892268465877}a^{7}+\frac{4219995300758}{297422821959}a^{6}-\frac{5246750702939}{892268465877}a^{5}-\frac{6563366414477}{297422821959}a^{4}-\frac{40609113693848}{297422821959}a^{3}-\frac{222276855973130}{892268465877}a^{2}-\frac{80422554510698}{892268465877}a-\frac{73220987340127}{297422821959}$, $\frac{14426359328}{297422821959}a^{10}-\frac{33489408040}{297422821959}a^{9}-\frac{78960921433}{99140940653}a^{8}+\frac{393345415550}{297422821959}a^{7}+\frac{352806714493}{99140940653}a^{6}-\frac{407623789346}{297422821959}a^{5}-\frac{410808002474}{99140940653}a^{4}-\frac{4751927055116}{99140940653}a^{3}-\frac{22307179830023}{297422821959}a^{2}-\frac{9426220221782}{297422821959}a-\frac{7873008856697}{99140940653}$, $\frac{18691816939}{297422821959}a^{10}+\frac{4371380003}{297422821959}a^{9}-\frac{417351885634}{297422821959}a^{8}-\frac{109738317712}{99140940653}a^{7}+\frac{933004538879}{99140940653}a^{6}+\frac{3926103700445}{297422821959}a^{5}-\frac{4606896066094}{297422821959}a^{4}-\frac{27652325613349}{297422821959}a^{3}-\frac{71475277058636}{297422821959}a^{2}-\frac{25308883531537}{99140940653}a-\frac{6933444048371}{99140940653}$, $\frac{6595542890}{892268465877}a^{10}+\frac{20348398043}{892268465877}a^{9}-\frac{45246413681}{297422821959}a^{8}-\frac{608498546341}{892268465877}a^{7}-\frac{92662425037}{297422821959}a^{6}+\frac{2105042680132}{892268465877}a^{5}+\frac{781825448108}{99140940653}a^{4}+\frac{1710706050106}{99140940653}a^{3}+\frac{17146786763395}{892268465877}a^{2}+\frac{12084314467663}{892268465877}a+\frac{4211091680609}{297422821959}$
|
| |
| Regulator: | \( 1258534.69335 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{3}\cdot(2\pi)^{4}\cdot 1258534.69335 \cdot 1}{2\cdot\sqrt{11763130845074473216}}\cr\approx \mathstrut & 2.28761635519 \end{aligned}\] (assuming GRH)
Galois group
$\PSL(2,11)$ (as 11T5):
| A non-solvable group of order 660 |
| The 8 conjugacy class representatives for $\PSL(2,11)$ |
| Character table for $\PSL(2,11)$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Degree 12 sibling: | 12.0.188210093521191571456.1 |
| Arithmetically equivalent sibling: | 11.3.11763130845074473216.1 |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/padicField/3.3.0.1}{3} }^{3}{,}\,{\href{/padicField/3.1.0.1}{1} }^{2}$ | ${\href{/padicField/5.5.0.1}{5} }^{2}{,}\,{\href{/padicField/5.1.0.1}{1} }$ | ${\href{/padicField/7.5.0.1}{5} }^{2}{,}\,{\href{/padicField/7.1.0.1}{1} }$ | R | ${\href{/padicField/13.3.0.1}{3} }^{3}{,}\,{\href{/padicField/13.1.0.1}{1} }^{2}$ | ${\href{/padicField/17.11.0.1}{11} }$ | ${\href{/padicField/19.3.0.1}{3} }^{3}{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ | ${\href{/padicField/23.5.0.1}{5} }^{2}{,}\,{\href{/padicField/23.1.0.1}{1} }$ | ${\href{/padicField/29.2.0.1}{2} }^{4}{,}\,{\href{/padicField/29.1.0.1}{1} }^{3}$ | ${\href{/padicField/31.11.0.1}{11} }$ | ${\href{/padicField/37.5.0.1}{5} }^{2}{,}\,{\href{/padicField/37.1.0.1}{1} }$ | ${\href{/padicField/41.6.0.1}{6} }{,}\,{\href{/padicField/41.3.0.1}{3} }{,}\,{\href{/padicField/41.2.0.1}{2} }$ | ${\href{/padicField/43.3.0.1}{3} }^{3}{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ | ${\href{/padicField/47.11.0.1}{11} }$ | ${\href{/padicField/53.5.0.1}{5} }^{2}{,}\,{\href{/padicField/53.1.0.1}{1} }$ | ${\href{/padicField/59.5.0.1}{5} }^{2}{,}\,{\href{/padicField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.1.2.2a1.2 | $x^{2} + 2 x + 6$ | $2$ | $1$ | $2$ | $C_2$ | $$[2]$$ |
| 2.3.1.0a1.1 | $x^{3} + x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ | |
| 2.3.2.6a1.2 | $x^{6} + 2 x^{4} + 4 x^{3} + x^{2} + 4 x + 9$ | $2$ | $3$ | $6$ | $C_6$ | $$[2]^{3}$$ | |
|
\(11\)
| 11.1.11.16a2.1 | $x^{11} + 22 x^{6} + 11$ | $11$ | $1$ | $16$ | $C_{11}:C_5$ | $$[\frac{8}{5}]_{5}$$ |