Normalized defining polynomial
\( x^{11} - x^{10} - 90 x^{9} + 115 x^{8} + 2349 x^{7} - 943 x^{6} - 26327 x^{5} - 21284 x^{4} + 102168 x^{3} + 217794 x^{2} + 148930 x + 30647 \)
Invariants
| Degree: | $11$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[11, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(97393677359695041798001=199^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $122.99$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $199$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(199\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{199}(1,·)$, $\chi_{199}(103,·)$, $\chi_{199}(139,·)$, $\chi_{199}(114,·)$, $\chi_{199}(61,·)$, $\chi_{199}(18,·)$, $\chi_{199}(121,·)$, $\chi_{199}(188,·)$, $\chi_{199}(125,·)$, $\chi_{199}(62,·)$, $\chi_{199}(63,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{19} a^{9} - \frac{2}{19} a^{8} - \frac{4}{19} a^{6} - \frac{3}{19} a^{5} + \frac{9}{19} a^{3} + \frac{6}{19} a^{2} - \frac{7}{19} a$, $\frac{1}{2626156363540903} a^{10} + \frac{16971015678963}{2626156363540903} a^{9} + \frac{543069253037908}{2626156363540903} a^{8} + \frac{1282680957737774}{2626156363540903} a^{7} + \frac{266849497773127}{2626156363540903} a^{6} + \frac{175733922112155}{2626156363540903} a^{5} - \frac{398340715614229}{2626156363540903} a^{4} - \frac{176975995579611}{2626156363540903} a^{3} + \frac{320511903583959}{2626156363540903} a^{2} - \frac{1178887899349553}{2626156363540903} a - \frac{16532606958192}{138218755975837}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 114390451.519 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 11 |
| The 11 conjugacy class representatives for $C_{11}$ |
| Character table for $C_{11}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.11.0.1}{11} }$ | ${\href{/LocalNumberField/3.11.0.1}{11} }$ | ${\href{/LocalNumberField/5.11.0.1}{11} }$ | ${\href{/LocalNumberField/7.11.0.1}{11} }$ | ${\href{/LocalNumberField/11.11.0.1}{11} }$ | ${\href{/LocalNumberField/13.11.0.1}{11} }$ | ${\href{/LocalNumberField/17.11.0.1}{11} }$ | ${\href{/LocalNumberField/19.1.0.1}{1} }^{11}$ | ${\href{/LocalNumberField/23.11.0.1}{11} }$ | ${\href{/LocalNumberField/29.11.0.1}{11} }$ | ${\href{/LocalNumberField/31.11.0.1}{11} }$ | ${\href{/LocalNumberField/37.1.0.1}{1} }^{11}$ | ${\href{/LocalNumberField/41.11.0.1}{11} }$ | ${\href{/LocalNumberField/43.1.0.1}{1} }^{11}$ | ${\href{/LocalNumberField/47.11.0.1}{11} }$ | ${\href{/LocalNumberField/53.11.0.1}{11} }$ | ${\href{/LocalNumberField/59.11.0.1}{11} }$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $199$ | 199.11.10.1 | $x^{11} - 199$ | $11$ | $1$ | $10$ | $C_{11}$ | $[\ ]_{11}$ |