Normalized defining polynomial
\( x^{11} - x^{10} - 180 x^{9} + 13 x^{8} + 11655 x^{7} + 12159 x^{6} - 316973 x^{5} - 720142 x^{4} + 2670510 x^{3} + 10551746 x^{2} + 10752776 x + 3098903 \)
Invariants
| Degree: | $11$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[11, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(97253461433805715000527049=397^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $230.43$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $397$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(397\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{397}(256,·)$, $\chi_{397}(1,·)$, $\chi_{397}(290,·)$, $\chi_{397}(99,·)$, $\chi_{397}(167,·)$, $\chi_{397}(393,·)$, $\chi_{397}(333,·)$, $\chi_{397}(16,·)$, $\chi_{397}(273,·)$, $\chi_{397}(126,·)$, $\chi_{397}(31,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{593} a^{9} - \frac{62}{593} a^{8} - \frac{216}{593} a^{7} + \frac{252}{593} a^{6} + \frac{259}{593} a^{5} + \frac{221}{593} a^{4} + \frac{109}{593} a^{3} + \frac{288}{593} a^{2} - \frac{16}{593} a + \frac{125}{593}$, $\frac{1}{3433962596340982322581} a^{10} - \frac{1864034678147035764}{3433962596340982322581} a^{9} - \frac{1560395736328182674475}{3433962596340982322581} a^{8} - \frac{880648007073015337340}{3433962596340982322581} a^{7} + \frac{1073869237618574445387}{3433962596340982322581} a^{6} - \frac{203443722202491656865}{3433962596340982322581} a^{5} - \frac{916178225319154199745}{3433962596340982322581} a^{4} + \frac{155204954424450808630}{3433962596340982322581} a^{3} - \frac{281030044754286555435}{3433962596340982322581} a^{2} - \frac{1486650429592343581908}{3433962596340982322581} a + \frac{34835375090824357318}{83755185276609324941}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1592800927.62 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 11 |
| The 11 conjugacy class representatives for $C_{11}$ |
| Character table for $C_{11}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.11.0.1}{11} }$ | ${\href{/LocalNumberField/3.11.0.1}{11} }$ | ${\href{/LocalNumberField/5.11.0.1}{11} }$ | ${\href{/LocalNumberField/7.11.0.1}{11} }$ | ${\href{/LocalNumberField/11.11.0.1}{11} }$ | ${\href{/LocalNumberField/13.11.0.1}{11} }$ | ${\href{/LocalNumberField/17.11.0.1}{11} }$ | ${\href{/LocalNumberField/19.11.0.1}{11} }$ | ${\href{/LocalNumberField/23.11.0.1}{11} }$ | ${\href{/LocalNumberField/29.11.0.1}{11} }$ | ${\href{/LocalNumberField/31.11.0.1}{11} }$ | ${\href{/LocalNumberField/37.11.0.1}{11} }$ | ${\href{/LocalNumberField/41.1.0.1}{1} }^{11}$ | ${\href{/LocalNumberField/43.11.0.1}{11} }$ | ${\href{/LocalNumberField/47.11.0.1}{11} }$ | ${\href{/LocalNumberField/53.11.0.1}{11} }$ | ${\href{/LocalNumberField/59.11.0.1}{11} }$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 397 | Data not computed | ||||||