Properties

Label 11.11.9135588830...4401.1
Degree $11$
Signature $[11, 0]$
Discriminant $991^{10}$
Root discriminant $529.30$
Ramified prime $991$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_{11}$ (as 11T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2032282741, -745717454, -205338716, 89323866, 6483322, -3728249, -76121, 65785, 393, -450, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^11 - x^10 - 450*x^9 + 393*x^8 + 65785*x^7 - 76121*x^6 - 3728249*x^5 + 6483322*x^4 + 89323866*x^3 - 205338716*x^2 - 745717454*x + 2032282741)
 
gp: K = bnfinit(x^11 - x^10 - 450*x^9 + 393*x^8 + 65785*x^7 - 76121*x^6 - 3728249*x^5 + 6483322*x^4 + 89323866*x^3 - 205338716*x^2 - 745717454*x + 2032282741, 1)
 

Normalized defining polynomial

\( x^{11} - x^{10} - 450 x^{9} + 393 x^{8} + 65785 x^{7} - 76121 x^{6} - 3728249 x^{5} + 6483322 x^{4} + 89323866 x^{3} - 205338716 x^{2} - 745717454 x + 2032282741 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $11$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[11, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(913558883040682586951726894401=991^{10}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $529.30$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $991$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(991\)
Dirichlet character group:    $\lbrace$$\chi_{991}(1,·)$, $\chi_{991}(773,·)$, $\chi_{991}(134,·)$, $\chi_{991}(673,·)$, $\chi_{991}(42,·)$, $\chi_{991}(50,·)$, $\chi_{991}(945,·)$, $\chi_{991}(754,·)$, $\chi_{991}(518,·)$, $\chi_{991}(118,·)$, $\chi_{991}(947,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{113} a^{9} + \frac{4}{113} a^{8} - \frac{18}{113} a^{7} + \frac{30}{113} a^{6} - \frac{15}{113} a^{5} + \frac{9}{113} a^{4} + \frac{40}{113} a^{3} + \frac{13}{113} a^{2} + \frac{12}{113} a + \frac{17}{113}$, $\frac{1}{1943416038504729430936374505723} a^{10} + \frac{1673873393221311237455672837}{1943416038504729430936374505723} a^{9} - \frac{342058738442820446720760511410}{1943416038504729430936374505723} a^{8} - \frac{338786785104354405887330408488}{1943416038504729430936374505723} a^{7} + \frac{160636184317781470080507393684}{1943416038504729430936374505723} a^{6} + \frac{717740006394547945589572974826}{1943416038504729430936374505723} a^{5} + \frac{551458555836419361696651887809}{1943416038504729430936374505723} a^{4} - \frac{467257527853364342173074218411}{1943416038504729430936374505723} a^{3} + \frac{661683577918864230300588323539}{1943416038504729430936374505723} a^{2} - \frac{63348553431339775807925149806}{1943416038504729430936374505723} a - \frac{726186298870880674592550165761}{1943416038504729430936374505723}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $10$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 155801246971 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{11}$ (as 11T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 11
The 11 conjugacy class representatives for $C_{11}$
Character table for $C_{11}$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.11.0.1}{11} }$ ${\href{/LocalNumberField/3.11.0.1}{11} }$ ${\href{/LocalNumberField/5.11.0.1}{11} }$ ${\href{/LocalNumberField/7.11.0.1}{11} }$ ${\href{/LocalNumberField/11.11.0.1}{11} }$ ${\href{/LocalNumberField/13.11.0.1}{11} }$ ${\href{/LocalNumberField/17.11.0.1}{11} }$ ${\href{/LocalNumberField/19.11.0.1}{11} }$ ${\href{/LocalNumberField/23.11.0.1}{11} }$ ${\href{/LocalNumberField/29.11.0.1}{11} }$ ${\href{/LocalNumberField/31.11.0.1}{11} }$ ${\href{/LocalNumberField/37.11.0.1}{11} }$ ${\href{/LocalNumberField/41.11.0.1}{11} }$ ${\href{/LocalNumberField/43.11.0.1}{11} }$ ${\href{/LocalNumberField/47.11.0.1}{11} }$ ${\href{/LocalNumberField/53.11.0.1}{11} }$ ${\href{/LocalNumberField/59.1.0.1}{1} }^{11}$

Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
991Data not computed