Normalized defining polynomial
\( x^{11} - 55 x^{9} - 33 x^{8} + 825 x^{7} + 396 x^{6} - 4972 x^{5} - 1287 x^{4} + 12760 x^{3} + 924 x^{2} - 10989 x - 243 \)
Invariants
| Degree: | $11$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[11, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(672749994932560009201=11^{20}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $78.24$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(121=11^{2}\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{121}(1,·)$, $\chi_{121}(34,·)$, $\chi_{121}(67,·)$, $\chi_{121}(100,·)$, $\chi_{121}(12,·)$, $\chi_{121}(45,·)$, $\chi_{121}(78,·)$, $\chi_{121}(111,·)$, $\chi_{121}(23,·)$, $\chi_{121}(56,·)$, $\chi_{121}(89,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{3} a^{4} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{5} - \frac{1}{3} a$, $\frac{1}{9} a^{6} + \frac{1}{9} a^{4} - \frac{2}{9} a^{2}$, $\frac{1}{9} a^{7} + \frac{1}{9} a^{5} + \frac{1}{9} a^{3} - \frac{1}{3} a$, $\frac{1}{81} a^{8} - \frac{1}{27} a^{7} - \frac{1}{27} a^{6} - \frac{1}{9} a^{5} - \frac{2}{27} a^{4} - \frac{19}{81} a^{2} + \frac{4}{27} a + \frac{1}{3}$, $\frac{1}{243} a^{9} + \frac{1}{243} a^{8} - \frac{2}{81} a^{7} - \frac{4}{81} a^{6} + \frac{7}{81} a^{5} + \frac{13}{81} a^{4} - \frac{10}{243} a^{3} + \frac{26}{243} a^{2} - \frac{29}{81} a + \frac{4}{9}$, $\frac{1}{333153} a^{10} + \frac{40}{37017} a^{9} + \frac{2042}{333153} a^{8} + \frac{991}{111051} a^{7} - \frac{4909}{111051} a^{6} + \frac{4607}{37017} a^{5} + \frac{28535}{333153} a^{4} + \frac{58}{457} a^{3} - \frac{148340}{333153} a^{2} - \frac{10396}{111051} a - \frac{2662}{12339}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 278432564.723 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 11 |
| The 11 conjugacy class representatives for $C_{11}$ |
| Character table for $C_{11}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.11.0.1}{11} }$ | ${\href{/LocalNumberField/3.1.0.1}{1} }^{11}$ | ${\href{/LocalNumberField/5.11.0.1}{11} }$ | ${\href{/LocalNumberField/7.11.0.1}{11} }$ | R | ${\href{/LocalNumberField/13.11.0.1}{11} }$ | ${\href{/LocalNumberField/17.11.0.1}{11} }$ | ${\href{/LocalNumberField/19.11.0.1}{11} }$ | ${\href{/LocalNumberField/23.11.0.1}{11} }$ | ${\href{/LocalNumberField/29.11.0.1}{11} }$ | ${\href{/LocalNumberField/31.11.0.1}{11} }$ | ${\href{/LocalNumberField/37.11.0.1}{11} }$ | ${\href{/LocalNumberField/41.11.0.1}{11} }$ | ${\href{/LocalNumberField/43.11.0.1}{11} }$ | ${\href{/LocalNumberField/47.11.0.1}{11} }$ | ${\href{/LocalNumberField/53.11.0.1}{11} }$ | ${\href{/LocalNumberField/59.11.0.1}{11} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.11.20.9 | $x^{11} - 11 x^{10} + 11$ | $11$ | $1$ | $20$ | $C_{11}$ | $[2]$ |