Normalized defining polynomial
\( x^{11} - x^{10} - 430 x^{9} - 2035 x^{8} + 28780 x^{7} + 141142 x^{6} - 760875 x^{5} - 3028650 x^{4} + 8674010 x^{3} + 20981317 x^{2} - 30077229 x - 47440673 \)
Invariants
| Degree: | $11$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[11, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(580095892065127629623589183049=947^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $507.89$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $947$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(947\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{947}(1,·)$, $\chi_{947}(930,·)$, $\chi_{947}(643,·)$, $\chi_{947}(580,·)$, $\chi_{947}(133,·)$, $\chi_{947}(289,·)$, $\chi_{947}(557,·)$, $\chi_{947}(433,·)$, $\chi_{947}(215,·)$, $\chi_{947}(185,·)$, $\chi_{947}(769,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{7} a^{6} - \frac{2}{7} a^{5} - \frac{3}{7} a^{4} - \frac{1}{7} a^{3} + \frac{2}{7} a^{2} + \frac{3}{7} a$, $\frac{1}{7} a^{7} - \frac{1}{7} a$, $\frac{1}{2303} a^{8} + \frac{32}{2303} a^{7} - \frac{64}{2303} a^{6} - \frac{1048}{2303} a^{5} - \frac{1117}{2303} a^{4} - \frac{1035}{2303} a^{3} - \frac{1088}{2303} a^{2} + \frac{36}{329} a + \frac{9}{47}$, $\frac{1}{12972799} a^{9} + \frac{955}{12972799} a^{8} + \frac{14205}{301693} a^{7} - \frac{307199}{12972799} a^{6} + \frac{359423}{12972799} a^{5} + \frac{102789}{276017} a^{4} + \frac{4732675}{12972799} a^{3} + \frac{2642664}{12972799} a^{2} + \frac{778382}{1853257} a + \frac{127358}{264751}$, $\frac{1}{14295205466575051319} a^{10} - \frac{483063088171}{14295205466575051319} a^{9} - \frac{2543216346299542}{14295205466575051319} a^{8} - \frac{379762534711941963}{14295205466575051319} a^{7} + \frac{752059469689337147}{14295205466575051319} a^{6} - \frac{4185529375121989192}{14295205466575051319} a^{5} - \frac{55701689073516993}{291738887072960231} a^{4} - \frac{3173116368964403704}{14295205466575051319} a^{3} - \frac{3889484805795192778}{14295205466575051319} a^{2} - \frac{570166728038867870}{2042172209510721617} a + \frac{136314565007939882}{291738887072960231}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1104123814020 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 11 |
| The 11 conjugacy class representatives for $C_{11}$ |
| Character table for $C_{11}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.11.0.1}{11} }$ | ${\href{/LocalNumberField/3.11.0.1}{11} }$ | ${\href{/LocalNumberField/5.11.0.1}{11} }$ | ${\href{/LocalNumberField/7.1.0.1}{1} }^{11}$ | ${\href{/LocalNumberField/11.11.0.1}{11} }$ | ${\href{/LocalNumberField/13.11.0.1}{11} }$ | ${\href{/LocalNumberField/17.11.0.1}{11} }$ | ${\href{/LocalNumberField/19.11.0.1}{11} }$ | ${\href{/LocalNumberField/23.11.0.1}{11} }$ | ${\href{/LocalNumberField/29.11.0.1}{11} }$ | ${\href{/LocalNumberField/31.11.0.1}{11} }$ | ${\href{/LocalNumberField/37.11.0.1}{11} }$ | ${\href{/LocalNumberField/41.1.0.1}{1} }^{11}$ | ${\href{/LocalNumberField/43.1.0.1}{1} }^{11}$ | ${\href{/LocalNumberField/47.1.0.1}{1} }^{11}$ | ${\href{/LocalNumberField/53.11.0.1}{11} }$ | ${\href{/LocalNumberField/59.11.0.1}{11} }$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 947 | Data not computed | ||||||