Normalized defining polynomial
\( x^{11} - x^{10} - 10x^{9} + 9x^{8} + 36x^{7} - 28x^{6} - 56x^{5} + 35x^{4} + 35x^{3} - 15x^{2} - 6x + 1 \)
Invariants
Degree: | $11$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[11, 0]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: |
\(41426511213649\)
\(\medspace = 23^{10}\)
| sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(17.30\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $23^{10/11}\approx 17.295550764917277$ | ||
Ramified primes: |
\(23\)
| sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q\) | ||
$\card{ \Gal(K/\Q) }$: | $11$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is Galois and abelian over $\Q$. | |||
Conductor: | \(23\) | ||
Dirichlet character group: | $\lbrace$$\chi_{23}(1,·)$, $\chi_{23}(2,·)$, $\chi_{23}(3,·)$, $\chi_{23}(4,·)$, $\chi_{23}(6,·)$, $\chi_{23}(8,·)$, $\chi_{23}(9,·)$, $\chi_{23}(12,·)$, $\chi_{23}(13,·)$, $\chi_{23}(16,·)$, $\chi_{23}(18,·)$$\rbrace$ | ||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$
Monogenic: | Yes | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $10$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: |
\( -1 \)
(order $2$)
| sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: |
$a^{2}-2$, $a$, $a^{10}-9a^{8}+28a^{6}-35a^{4}+15a^{2}-1$, $a^{6}-6a^{4}+9a^{2}-2$, $a^{4}-4a^{2}+2$, $a^{10}-a^{9}-10a^{8}+9a^{7}+36a^{6}-28a^{5}-56a^{4}+35a^{3}+35a^{2}-14a-6$, $a^{8}-8a^{6}+21a^{4}-20a^{2}+5$, $a^{9}-9a^{7}+27a^{5}-30a^{3}+9a-1$, $a^{5}-5a^{3}+5a-1$, $a^{10}-10a^{8}+35a^{6}-50a^{4}-a^{3}+25a^{2}+3a-1$
| sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 1014.31330506 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{11}\cdot(2\pi)^{0}\cdot 1014.31330506 \cdot 1}{2\cdot\sqrt{41426511213649}}\cr\approx \mathstrut & 0.161373752825 \end{aligned}\]
Galois group
A cyclic group of order 11 |
The 11 conjugacy class representatives for $C_{11}$ |
Character table for $C_{11}$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.11.0.1}{11} }$ | ${\href{/padicField/3.11.0.1}{11} }$ | ${\href{/padicField/5.11.0.1}{11} }$ | ${\href{/padicField/7.11.0.1}{11} }$ | ${\href{/padicField/11.11.0.1}{11} }$ | ${\href{/padicField/13.11.0.1}{11} }$ | ${\href{/padicField/17.11.0.1}{11} }$ | ${\href{/padicField/19.11.0.1}{11} }$ | R | ${\href{/padicField/29.11.0.1}{11} }$ | ${\href{/padicField/31.11.0.1}{11} }$ | ${\href{/padicField/37.11.0.1}{11} }$ | ${\href{/padicField/41.11.0.1}{11} }$ | ${\href{/padicField/43.11.0.1}{11} }$ | ${\href{/padicField/47.1.0.1}{1} }^{11}$ | ${\href{/padicField/53.11.0.1}{11} }$ | ${\href{/padicField/59.11.0.1}{11} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(23\)
| 23.11.10.10 | $x^{11} + 23$ | $11$ | $1$ | $10$ | $C_{11}$ | $[\ ]_{11}$ |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
* | 1.23.11t1.a.a | $1$ | $ 23 $ | \(\Q(\zeta_{23})^+\) | $C_{11}$ (as 11T1) | $0$ | $1$ |
* | 1.23.11t1.a.b | $1$ | $ 23 $ | \(\Q(\zeta_{23})^+\) | $C_{11}$ (as 11T1) | $0$ | $1$ |
* | 1.23.11t1.a.c | $1$ | $ 23 $ | \(\Q(\zeta_{23})^+\) | $C_{11}$ (as 11T1) | $0$ | $1$ |
* | 1.23.11t1.a.d | $1$ | $ 23 $ | \(\Q(\zeta_{23})^+\) | $C_{11}$ (as 11T1) | $0$ | $1$ |
* | 1.23.11t1.a.e | $1$ | $ 23 $ | \(\Q(\zeta_{23})^+\) | $C_{11}$ (as 11T1) | $0$ | $1$ |
* | 1.23.11t1.a.f | $1$ | $ 23 $ | \(\Q(\zeta_{23})^+\) | $C_{11}$ (as 11T1) | $0$ | $1$ |
* | 1.23.11t1.a.g | $1$ | $ 23 $ | \(\Q(\zeta_{23})^+\) | $C_{11}$ (as 11T1) | $0$ | $1$ |
* | 1.23.11t1.a.h | $1$ | $ 23 $ | \(\Q(\zeta_{23})^+\) | $C_{11}$ (as 11T1) | $0$ | $1$ |
* | 1.23.11t1.a.i | $1$ | $ 23 $ | \(\Q(\zeta_{23})^+\) | $C_{11}$ (as 11T1) | $0$ | $1$ |
* | 1.23.11t1.a.j | $1$ | $ 23 $ | \(\Q(\zeta_{23})^+\) | $C_{11}$ (as 11T1) | $0$ | $1$ |