Normalized defining polynomial
\( x^{11} - x^{10} - 330 x^{9} - 637 x^{8} + 30782 x^{7} + 122078 x^{6} - 616689 x^{5} - 3355168 x^{4} + 183306 x^{3} + 17584739 x^{2} + 19842261 x + 2279191 \)
Invariants
| Degree: | $11$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[11, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(41242416955341131537413053649=727^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $399.39$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $727$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(727\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{727}(1,·)$, $\chi_{727}(645,·)$, $\chi_{727}(648,·)$, $\chi_{727}(425,·)$, $\chi_{727}(46,·)$, $\chi_{727}(241,·)$, $\chi_{727}(594,·)$, $\chi_{727}(181,·)$, $\chi_{727}(662,·)$, $\chi_{727}(329,·)$, $\chi_{727}(590,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{29} a^{8} + \frac{7}{29} a^{6} + \frac{1}{29} a^{5} - \frac{5}{29} a^{4} + \frac{10}{29} a^{3} - \frac{4}{29} a^{2} - \frac{5}{29} a - \frac{5}{29}$, $\frac{1}{17893} a^{9} - \frac{42}{17893} a^{8} + \frac{6764}{17893} a^{7} - \frac{5049}{17893} a^{6} + \frac{707}{17893} a^{5} + \frac{6803}{17893} a^{4} + \frac{1258}{17893} a^{3} - \frac{4419}{17893} a^{2} - \frac{5740}{17893} a - \frac{4227}{17893}$, $\frac{1}{259647786661076784636995911} a^{10} + \frac{2888977559385799782366}{259647786661076784636995911} a^{9} + \frac{859918845365004049336941}{259647786661076784636995911} a^{8} - \frac{21814259164910969017808517}{259647786661076784636995911} a^{7} - \frac{8009797803234967270599123}{259647786661076784636995911} a^{6} + \frac{70743325749847278078711194}{259647786661076784636995911} a^{5} + \frac{113768596303670902163080847}{259647786661076784636995911} a^{4} + \frac{3249434766286444540802878}{259647786661076784636995911} a^{3} - \frac{2143568679633685579788051}{259647786661076784636995911} a^{2} - \frac{56130604632267528207903882}{259647786661076784636995911} a - \frac{11482433010280082696761781}{259647786661076784636995911}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 49130453388.1 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 11 |
| The 11 conjugacy class representatives for $C_{11}$ |
| Character table for $C_{11}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.11.0.1}{11} }$ | ${\href{/LocalNumberField/3.11.0.1}{11} }$ | ${\href{/LocalNumberField/5.11.0.1}{11} }$ | ${\href{/LocalNumberField/7.11.0.1}{11} }$ | ${\href{/LocalNumberField/11.11.0.1}{11} }$ | ${\href{/LocalNumberField/13.11.0.1}{11} }$ | ${\href{/LocalNumberField/17.11.0.1}{11} }$ | ${\href{/LocalNumberField/19.11.0.1}{11} }$ | ${\href{/LocalNumberField/23.11.0.1}{11} }$ | ${\href{/LocalNumberField/29.1.0.1}{1} }^{11}$ | ${\href{/LocalNumberField/31.11.0.1}{11} }$ | ${\href{/LocalNumberField/37.11.0.1}{11} }$ | ${\href{/LocalNumberField/41.11.0.1}{11} }$ | ${\href{/LocalNumberField/43.11.0.1}{11} }$ | ${\href{/LocalNumberField/47.11.0.1}{11} }$ | ${\href{/LocalNumberField/53.11.0.1}{11} }$ | ${\href{/LocalNumberField/59.11.0.1}{11} }$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 727 | Data not computed | ||||||