Normalized defining polynomial
\( x^{11} - x^{10} - 160 x^{9} + 525 x^{8} + 6066 x^{7} - 26034 x^{6} - 48369 x^{5} + 265374 x^{4} - 42966 x^{3} - 405001 x^{2} + 63189 x + 170569 \)
Invariants
| Degree: | $11$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[11, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(30043259834681392663962049=353^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $207.09$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $353$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(353\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{353}(256,·)$, $\chi_{353}(1,·)$, $\chi_{353}(131,·)$, $\chi_{353}(231,·)$, $\chi_{353}(140,·)$, $\chi_{353}(337,·)$, $\chi_{353}(22,·)$, $\chi_{353}(185,·)$, $\chi_{353}(217,·)$, $\chi_{353}(58,·)$, $\chi_{353}(187,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{7} a^{6} - \frac{2}{7} a^{5} - \frac{3}{7} a^{4} - \frac{1}{7} a^{3} + \frac{2}{7} a^{2} + \frac{3}{7} a$, $\frac{1}{7} a^{7} - \frac{1}{7} a$, $\frac{1}{7} a^{8} - \frac{1}{7} a^{2}$, $\frac{1}{343} a^{9} - \frac{12}{343} a^{8} - \frac{16}{343} a^{7} + \frac{18}{343} a^{6} + \frac{139}{343} a^{5} + \frac{142}{343} a^{4} + \frac{2}{343} a^{3} + \frac{55}{343} a^{2} - \frac{5}{49} a + \frac{1}{7}$, $\frac{1}{22606707880007901643} a^{10} + \frac{425355903710770}{3229529697143985949} a^{9} + \frac{1385234345521597656}{22606707880007901643} a^{8} - \frac{205467290213406304}{22606707880007901643} a^{7} + \frac{271596129071586338}{22606707880007901643} a^{6} + \frac{10739218554099059413}{22606707880007901643} a^{5} + \frac{7545291121782715607}{22606707880007901643} a^{4} - \frac{10736768046791550524}{22606707880007901643} a^{3} + \frac{7798810059569900170}{22606707880007901643} a^{2} + \frac{365738944794150084}{3229529697143985949} a - \frac{2775060832662338}{7819684496716673}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5373530988.23 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 11 |
| The 11 conjugacy class representatives for $C_{11}$ |
| Character table for $C_{11}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.11.0.1}{11} }$ | ${\href{/LocalNumberField/3.11.0.1}{11} }$ | ${\href{/LocalNumberField/5.11.0.1}{11} }$ | ${\href{/LocalNumberField/7.1.0.1}{1} }^{11}$ | ${\href{/LocalNumberField/11.11.0.1}{11} }$ | ${\href{/LocalNumberField/13.11.0.1}{11} }$ | ${\href{/LocalNumberField/17.11.0.1}{11} }$ | ${\href{/LocalNumberField/19.11.0.1}{11} }$ | ${\href{/LocalNumberField/23.11.0.1}{11} }$ | ${\href{/LocalNumberField/29.11.0.1}{11} }$ | ${\href{/LocalNumberField/31.11.0.1}{11} }$ | ${\href{/LocalNumberField/37.11.0.1}{11} }$ | ${\href{/LocalNumberField/41.11.0.1}{11} }$ | ${\href{/LocalNumberField/43.11.0.1}{11} }$ | ${\href{/LocalNumberField/47.11.0.1}{11} }$ | ${\href{/LocalNumberField/53.11.0.1}{11} }$ | ${\href{/LocalNumberField/59.1.0.1}{1} }^{11}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 353 | Data not computed | ||||||