Properties

Label 11.11.2816819925...6801.1
Degree $11$
Signature $[11, 0]$
Discriminant $881^{10}$
Root discriminant $475.61$
Ramified prime $881$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_{11}$ (as 11T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1306999, -1474244, -2774565, 1931229, 1281923, -648406, -51208, 34594, 29, -400, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^11 - x^10 - 400*x^9 + 29*x^8 + 34594*x^7 - 51208*x^6 - 648406*x^5 + 1281923*x^4 + 1931229*x^3 - 2774565*x^2 - 1474244*x + 1306999)
 
gp: K = bnfinit(x^11 - x^10 - 400*x^9 + 29*x^8 + 34594*x^7 - 51208*x^6 - 648406*x^5 + 1281923*x^4 + 1931229*x^3 - 2774565*x^2 - 1474244*x + 1306999, 1)
 

Normalized defining polynomial

\( x^{11} - x^{10} - 400 x^{9} + 29 x^{8} + 34594 x^{7} - 51208 x^{6} - 648406 x^{5} + 1281923 x^{4} + 1931229 x^{3} - 2774565 x^{2} - 1474244 x + 1306999 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $11$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[11, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(281681992520036568627910696801=881^{10}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $475.61$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $881$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(881\)
Dirichlet character group:    $\lbrace$$\chi_{881}(32,·)$, $\chi_{881}(1,·)$, $\chi_{881}(168,·)$, $\chi_{881}(171,·)$, $\chi_{881}(237,·)$, $\chi_{881}(143,·)$, $\chi_{881}(90,·)$, $\chi_{881}(186,·)$, $\chi_{881}(536,·)$, $\chi_{881}(666,·)$, $\chi_{881}(413,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{7} a^{5} + \frac{1}{7} a^{4} + \frac{1}{7} a^{3} + \frac{1}{7} a^{2} + \frac{1}{7} a + \frac{1}{7}$, $\frac{1}{7} a^{6} - \frac{1}{7}$, $\frac{1}{7} a^{7} - \frac{1}{7} a$, $\frac{1}{49} a^{8} - \frac{1}{49} a^{7} - \frac{3}{49} a^{6} + \frac{1}{49} a^{5} + \frac{15}{49} a^{4} - \frac{6}{49} a^{3} - \frac{3}{7} a^{2} + \frac{16}{49} a - \frac{10}{49}$, $\frac{1}{49} a^{9} + \frac{3}{49} a^{7} - \frac{2}{49} a^{6} + \frac{2}{49} a^{5} - \frac{5}{49} a^{4} + \frac{8}{49} a^{3} - \frac{19}{49} a^{2} - \frac{15}{49} a - \frac{24}{49}$, $\frac{1}{180955868405049480166675573} a^{10} - \frac{1145549629471584733047343}{180955868405049480166675573} a^{9} + \frac{604024058748345647238961}{180955868405049480166675573} a^{8} + \frac{614271746325555303744587}{180955868405049480166675573} a^{7} - \frac{5962324705728063028771822}{180955868405049480166675573} a^{6} - \frac{11606466568775002541958066}{180955868405049480166675573} a^{5} + \frac{37882384255812704641504878}{180955868405049480166675573} a^{4} - \frac{84253617427728310692658716}{180955868405049480166675573} a^{3} + \frac{34160734451549455746943458}{180955868405049480166675573} a^{2} - \frac{45950403931298932220477771}{180955868405049480166675573} a - \frac{87363931495865723331892249}{180955868405049480166675573}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $10$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 379023342573 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{11}$ (as 11T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 11
The 11 conjugacy class representatives for $C_{11}$
Character table for $C_{11}$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.11.0.1}{11} }$ ${\href{/LocalNumberField/3.11.0.1}{11} }$ ${\href{/LocalNumberField/5.11.0.1}{11} }$ ${\href{/LocalNumberField/7.1.0.1}{1} }^{11}$ ${\href{/LocalNumberField/11.11.0.1}{11} }$ ${\href{/LocalNumberField/13.11.0.1}{11} }$ ${\href{/LocalNumberField/17.11.0.1}{11} }$ ${\href{/LocalNumberField/19.11.0.1}{11} }$ ${\href{/LocalNumberField/23.11.0.1}{11} }$ ${\href{/LocalNumberField/29.11.0.1}{11} }$ ${\href{/LocalNumberField/31.11.0.1}{11} }$ ${\href{/LocalNumberField/37.11.0.1}{11} }$ ${\href{/LocalNumberField/41.11.0.1}{11} }$ ${\href{/LocalNumberField/43.11.0.1}{11} }$ ${\href{/LocalNumberField/47.11.0.1}{11} }$ ${\href{/LocalNumberField/53.11.0.1}{11} }$ ${\href{/LocalNumberField/59.11.0.1}{11} }$

Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
881Data not computed