Normalized defining polynomial
\( x^{11} - 1265 x^{9} - 17457 x^{8} + 94116 x^{7} + 2769844 x^{6} + 11844195 x^{5} - 25677729 x^{4} - 204142917 x^{3} - 41615211 x^{2} + 796965433 x + 479405629 \)
Invariants
| Degree: | $11$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[11, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(27869685209056005146671841116784449=11^{20}\cdot 23^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1353.24$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2783=11^{2}\cdot 23\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2783}(1,·)$, $\chi_{2783}(1189,·)$, $\chi_{2783}(1904,·)$, $\chi_{2783}(749,·)$, $\chi_{2783}(1200,·)$, $\chi_{2783}(1618,·)$, $\chi_{2783}(2740,·)$, $\chi_{2783}(2674,·)$, $\chi_{2783}(1750,·)$, $\chi_{2783}(1849,·)$, $\chi_{2783}(1277,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{998249721075809988567092546540018742139} a^{10} - \frac{136564117826947593935224856929318025562}{998249721075809988567092546540018742139} a^{9} - \frac{83390496059460910386225716806387825302}{998249721075809988567092546540018742139} a^{8} - \frac{405590379532386431079640333751680183256}{998249721075809988567092546540018742139} a^{7} + \frac{168272488020813771193630993300948060887}{998249721075809988567092546540018742139} a^{6} - \frac{83260329278457816200105125062858966155}{998249721075809988567092546540018742139} a^{5} + \frac{104117843323883291942113261253487915957}{998249721075809988567092546540018742139} a^{4} - \frac{74945961117161603615976366481714820065}{998249721075809988567092546540018742139} a^{3} + \frac{300668109037271112184176573260333332410}{998249721075809988567092546540018742139} a^{2} + \frac{79136108410518960159543673360623737106}{998249721075809988567092546540018742139} a + \frac{143107745032511669326007229330490708504}{998249721075809988567092546540018742139}$
Class group and class number
$C_{11}$, which has order $11$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2107938978012.7551 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 11 |
| The 11 conjugacy class representatives for $C_{11}$ |
| Character table for $C_{11}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.11.0.1}{11} }$ | ${\href{/LocalNumberField/3.11.0.1}{11} }$ | ${\href{/LocalNumberField/5.11.0.1}{11} }$ | ${\href{/LocalNumberField/7.11.0.1}{11} }$ | R | ${\href{/LocalNumberField/13.11.0.1}{11} }$ | ${\href{/LocalNumberField/17.11.0.1}{11} }$ | ${\href{/LocalNumberField/19.11.0.1}{11} }$ | R | ${\href{/LocalNumberField/29.11.0.1}{11} }$ | ${\href{/LocalNumberField/31.11.0.1}{11} }$ | ${\href{/LocalNumberField/37.11.0.1}{11} }$ | ${\href{/LocalNumberField/41.11.0.1}{11} }$ | ${\href{/LocalNumberField/43.11.0.1}{11} }$ | ${\href{/LocalNumberField/47.11.0.1}{11} }$ | ${\href{/LocalNumberField/53.11.0.1}{11} }$ | ${\href{/LocalNumberField/59.11.0.1}{11} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.11.20.8 | $x^{11} - 11 x^{10} + 1221$ | $11$ | $1$ | $20$ | $C_{11}$ | $[2]$ |
| $23$ | 23.11.10.11 | $x^{11} - 92$ | $11$ | $1$ | $10$ | $C_{11}$ | $[\ ]_{11}$ |