Normalized defining polynomial
\( x^{11} - 1265 x^{9} - 759 x^{8} + 511566 x^{7} + 810612 x^{6} - 74117109 x^{5} - 171278723 x^{4} + 3526980655 x^{3} + 9233082947 x^{2} - 12188156343 x - 5403811843 \)
Invariants
| Degree: | $11$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[11, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(27869685209056005146671841116784449=11^{20}\cdot 23^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1353.24$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2783=11^{2}\cdot 23\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2783}(1024,·)$, $\chi_{2783}(1,·)$, $\chi_{2783}(2377,·)$, $\chi_{2783}(1706,·)$, $\chi_{2783}(331,·)$, $\chi_{2783}(2520,·)$, $\chi_{2783}(2003,·)$, $\chi_{2783}(2168,·)$, $\chi_{2783}(2201,·)$, $\chi_{2783}(1981,·)$, $\chi_{2783}(639,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{41} a^{9} - \frac{11}{41} a^{8} + \frac{17}{41} a^{7} + \frac{18}{41} a^{6} - \frac{9}{41} a^{5} + \frac{6}{41} a^{4} + \frac{7}{41} a^{3} + \frac{8}{41} a^{2} + \frac{20}{41} a + \frac{9}{41}$, $\frac{1}{254377575449844576760977514428297904994324783} a^{10} + \frac{1294049412874065938057568255728992921635611}{254377575449844576760977514428297904994324783} a^{9} + \frac{96033573895359775037014587089973679756094528}{254377575449844576760977514428297904994324783} a^{8} + \frac{115200263926811644706366553149009432781364291}{254377575449844576760977514428297904994324783} a^{7} + \frac{29620978465718972181651912921499070014936236}{254377575449844576760977514428297904994324783} a^{6} - \frac{103119689929849313100473955192749048305407805}{254377575449844576760977514428297904994324783} a^{5} + \frac{113537796399120713911421698513892007021451766}{254377575449844576760977514428297904994324783} a^{4} - \frac{109370623460943807013373631102401971137543446}{254377575449844576760977514428297904994324783} a^{3} - \frac{4912677963729596074632527207020349870344868}{254377575449844576760977514428297904994324783} a^{2} + \frac{80922460757606328679170356101804020745139822}{254377575449844576760977514428297904994324783} a - \frac{78498134196418508758730430817370546805916}{2858175005054433446752556341890987696565447}$
Class group and class number
$C_{11}$, which has order $11$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3514735062507.8184 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 11 |
| The 11 conjugacy class representatives for $C_{11}$ |
| Character table for $C_{11}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.11.0.1}{11} }$ | ${\href{/LocalNumberField/3.11.0.1}{11} }$ | ${\href{/LocalNumberField/5.11.0.1}{11} }$ | ${\href{/LocalNumberField/7.11.0.1}{11} }$ | R | ${\href{/LocalNumberField/13.11.0.1}{11} }$ | ${\href{/LocalNumberField/17.11.0.1}{11} }$ | ${\href{/LocalNumberField/19.11.0.1}{11} }$ | R | ${\href{/LocalNumberField/29.11.0.1}{11} }$ | ${\href{/LocalNumberField/31.11.0.1}{11} }$ | ${\href{/LocalNumberField/37.11.0.1}{11} }$ | ${\href{/LocalNumberField/41.1.0.1}{1} }^{11}$ | ${\href{/LocalNumberField/43.11.0.1}{11} }$ | ${\href{/LocalNumberField/47.11.0.1}{11} }$ | ${\href{/LocalNumberField/53.11.0.1}{11} }$ | ${\href{/LocalNumberField/59.11.0.1}{11} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.11.20.10 | $x^{11} - 11 x^{10} + 132$ | $11$ | $1$ | $20$ | $C_{11}$ | $[2]$ |
| $23$ | 23.11.10.7 | $x^{11} + 11776$ | $11$ | $1$ | $10$ | $C_{11}$ | $[\ ]_{11}$ |