Properties

Label 11.11.2786968520...4449.5
Degree $11$
Signature $[11, 0]$
Discriminant $11^{20}\cdot 23^{10}$
Root discriminant $1353.24$
Ramified primes $11, 23$
Class number $11$ (GRH)
Class group $[11]$ (GRH)
Galois group $C_{11}$ (as 11T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-15433395968, -2608377376, 2487077032, 313069284, -129158018, -11416119, 2435884, 185955, -14674, -1265, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^11 - 1265*x^9 - 14674*x^8 + 185955*x^7 + 2435884*x^6 - 11416119*x^5 - 129158018*x^4 + 313069284*x^3 + 2487077032*x^2 - 2608377376*x - 15433395968)
 
gp: K = bnfinit(x^11 - 1265*x^9 - 14674*x^8 + 185955*x^7 + 2435884*x^6 - 11416119*x^5 - 129158018*x^4 + 313069284*x^3 + 2487077032*x^2 - 2608377376*x - 15433395968, 1)
 

Normalized defining polynomial

\( x^{11} - 1265 x^{9} - 14674 x^{8} + 185955 x^{7} + 2435884 x^{6} - 11416119 x^{5} - 129158018 x^{4} + 313069284 x^{3} + 2487077032 x^{2} - 2608377376 x - 15433395968 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $11$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[11, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(27869685209056005146671841116784449=11^{20}\cdot 23^{10}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $1353.24$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $11, 23$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(2783=11^{2}\cdot 23\)
Dirichlet character group:    $\lbrace$$\chi_{2783}(1,·)$, $\chi_{2783}(738,·)$, $\chi_{2783}(1959,·)$, $\chi_{2783}(2289,·)$, $\chi_{2783}(210,·)$, $\chi_{2783}(2355,·)$, $\chi_{2783}(2707,·)$, $\chi_{2783}(1365,·)$, $\chi_{2783}(1398,·)$, $\chi_{2783}(1915,·)$, $\chi_{2783}(2014,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{4} - \frac{1}{4} a^{3} - \frac{1}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{8} a^{5} - \frac{1}{8} a^{3}$, $\frac{1}{32} a^{6} - \frac{1}{32} a^{5} + \frac{1}{32} a^{4} - \frac{7}{32} a^{3} - \frac{1}{16} a^{2} + \frac{1}{4} a$, $\frac{1}{32} a^{7} - \frac{1}{16} a^{4} - \frac{1}{32} a^{3} + \frac{1}{16} a^{2}$, $\frac{1}{512} a^{8} - \frac{1}{128} a^{7} - \frac{1}{256} a^{6} + \frac{7}{128} a^{5} - \frac{19}{512} a^{4} - \frac{13}{64} a^{3} - \frac{27}{128} a^{2} - \frac{11}{32} a - \frac{1}{4}$, $\frac{1}{1024} a^{9} - \frac{1}{1024} a^{8} + \frac{1}{512} a^{7} - \frac{5}{512} a^{6} + \frac{33}{1024} a^{5} + \frac{31}{1024} a^{4} + \frac{27}{256} a^{3} - \frac{37}{256} a^{2} + \frac{23}{64} a - \frac{3}{8}$, $\frac{1}{1643252792952947303094720268288} a^{10} - \frac{213235206030035838693983}{1014980106827021187828733952} a^{9} + \frac{337550911095541245762904787}{410813198238236825773680067072} a^{8} - \frac{4976236084242946856208333949}{821626396476473651547360134144} a^{7} + \frac{7676119980725802137137820637}{1643252792952947303094720268288} a^{6} + \frac{31520746991987756540572460635}{1643252792952947303094720268288} a^{5} + \frac{50524876862155718865996797935}{821626396476473651547360134144} a^{4} + \frac{69060817787852140509687423411}{410813198238236825773680067072} a^{3} + \frac{28243195689206126987484621631}{205406599119118412886840033536} a^{2} - \frac{8941284101507027256561801995}{51351649779779603221710008384} a - \frac{334462050316728377271031}{3964766042293051514955992}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{11}$, which has order $11$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $10$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 5237308266600679.0 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{11}$ (as 11T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 11
The 11 conjugacy class representatives for $C_{11}$
Character table for $C_{11}$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.1.0.1}{1} }^{11}$ ${\href{/LocalNumberField/3.11.0.1}{11} }$ ${\href{/LocalNumberField/5.11.0.1}{11} }$ ${\href{/LocalNumberField/7.11.0.1}{11} }$ R ${\href{/LocalNumberField/13.11.0.1}{11} }$ ${\href{/LocalNumberField/17.11.0.1}{11} }$ ${\href{/LocalNumberField/19.11.0.1}{11} }$ R ${\href{/LocalNumberField/29.11.0.1}{11} }$ ${\href{/LocalNumberField/31.11.0.1}{11} }$ ${\href{/LocalNumberField/37.11.0.1}{11} }$ ${\href{/LocalNumberField/41.11.0.1}{11} }$ ${\href{/LocalNumberField/43.11.0.1}{11} }$ ${\href{/LocalNumberField/47.11.0.1}{11} }$ ${\href{/LocalNumberField/53.11.0.1}{11} }$ ${\href{/LocalNumberField/59.11.0.1}{11} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$11$11.11.20.4$x^{11} - 11 x^{10} + 737$$11$$1$$20$$C_{11}$$[2]$
$23$23.11.10.1$x^{11} + 2944$$11$$1$$10$$C_{11}$$[\ ]_{11}$