Normalized defining polynomial
\( x^{11} - 1265 x^{9} - 4807 x^{8} + 478170 x^{7} + 3280398 x^{6} - 48772328 x^{5} - 446246713 x^{4} + 942027284 x^{3} + 16580057472 x^{2} + 32566872448 x - 22424006285 \)
Invariants
| Degree: | $11$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[11, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(27869685209056005146671841116784449=11^{20}\cdot 23^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1353.24$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2783=11^{2}\cdot 23\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2783}(1,·)$, $\chi_{2783}(265,·)$, $\chi_{2783}(2762,·)$, $\chi_{2783}(1871,·)$, $\chi_{2783}(2410,·)$, $\chi_{2783}(2454,·)$, $\chi_{2783}(2487,·)$, $\chi_{2783}(441,·)$, $\chi_{2783}(2267,·)$, $\chi_{2783}(650,·)$, $\chi_{2783}(1343,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{5} a^{5} - \frac{1}{5} a$, $\frac{1}{5} a^{6} - \frac{1}{5} a^{2}$, $\frac{1}{5} a^{7} - \frac{1}{5} a^{3}$, $\frac{1}{325} a^{8} - \frac{11}{325} a^{7} - \frac{9}{325} a^{6} + \frac{9}{325} a^{5} + \frac{109}{325} a^{4} - \frac{29}{325} a^{3} + \frac{99}{325} a^{2} - \frac{49}{325} a - \frac{4}{65}$, $\frac{1}{5364125} a^{9} - \frac{1282}{5364125} a^{8} + \frac{361072}{5364125} a^{7} + \frac{300373}{5364125} a^{6} + \frac{72744}{1072825} a^{5} - \frac{2538368}{5364125} a^{4} + \frac{808833}{5364125} a^{3} + \frac{1380822}{5364125} a^{2} + \frac{1867634}{5364125} a - \frac{134861}{1072825}$, $\frac{1}{558565118792835395318513825276875} a^{10} - \frac{20225275287340329916845189}{558565118792835395318513825276875} a^{9} - \frac{188188218336492035437530449964}{558565118792835395318513825276875} a^{8} + \frac{11868120677752363629023817566879}{558565118792835395318513825276875} a^{7} + \frac{10928205487747813004696725583374}{558565118792835395318513825276875} a^{6} - \frac{25021037242677400560911987839273}{558565118792835395318513825276875} a^{5} - \frac{262556127730347755558594617092431}{558565118792835395318513825276875} a^{4} + \frac{211603189417338940791955014518381}{558565118792835395318513825276875} a^{3} - \frac{40256500411817758524191849815082}{111713023758567079063702765055375} a^{2} - \frac{5706105135397275378276186665131}{42966547599448876562962601944375} a - \frac{47770160349290753699146329545433}{111713023758567079063702765055375}$
Class group and class number
$C_{11}$, which has order $11$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 50372046418790.55 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 11 |
| The 11 conjugacy class representatives for $C_{11}$ |
| Character table for $C_{11}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.11.0.1}{11} }$ | ${\href{/LocalNumberField/3.11.0.1}{11} }$ | ${\href{/LocalNumberField/5.1.0.1}{1} }^{11}$ | ${\href{/LocalNumberField/7.11.0.1}{11} }$ | R | ${\href{/LocalNumberField/13.1.0.1}{1} }^{11}$ | ${\href{/LocalNumberField/17.11.0.1}{11} }$ | ${\href{/LocalNumberField/19.11.0.1}{11} }$ | R | ${\href{/LocalNumberField/29.11.0.1}{11} }$ | ${\href{/LocalNumberField/31.11.0.1}{11} }$ | ${\href{/LocalNumberField/37.11.0.1}{11} }$ | ${\href{/LocalNumberField/41.11.0.1}{11} }$ | ${\href{/LocalNumberField/43.11.0.1}{11} }$ | ${\href{/LocalNumberField/47.11.0.1}{11} }$ | ${\href{/LocalNumberField/53.11.0.1}{11} }$ | ${\href{/LocalNumberField/59.11.0.1}{11} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.11.20.6 | $x^{11} - 11 x^{10} + 979$ | $11$ | $1$ | $20$ | $C_{11}$ | $[2]$ |
| $23$ | 23.11.10.2 | $x^{11} - 5888$ | $11$ | $1$ | $10$ | $C_{11}$ | $[\ ]_{11}$ |