Normalized defining polynomial
\( x^{11} - 1265 x^{9} - 4807 x^{8} + 528264 x^{7} + 3347190 x^{6} - 77350955 x^{5} - 506615549 x^{4} + 4435947417 x^{3} + 22379726501 x^{2} - 83401753347 x - 84992124733 \)
Invariants
| Degree: | $11$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[11, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(27869685209056005146671841116784449=11^{20}\cdot 23^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1353.24$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2783=11^{2}\cdot 23\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2783}(1,·)$, $\chi_{2783}(386,·)$, $\chi_{2783}(1761,·)$, $\chi_{2783}(584,·)$, $\chi_{2783}(716,·)$, $\chi_{2783}(397,·)$, $\chi_{2783}(177,·)$, $\chi_{2783}(694,·)$, $\chi_{2783}(1497,·)$, $\chi_{2783}(1530,·)$, $\chi_{2783}(859,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{323} a^{7} - \frac{5}{323} a^{6} - \frac{160}{323} a^{5} + \frac{7}{323} a^{4} + \frac{115}{323} a^{3} - \frac{84}{323} a^{2} - \frac{89}{323} a - \frac{3}{19}$, $\frac{1}{323} a^{8} + \frac{138}{323} a^{6} - \frac{147}{323} a^{5} + \frac{150}{323} a^{4} - \frac{155}{323} a^{3} + \frac{137}{323} a^{2} + \frac{150}{323} a + \frac{4}{19}$, $\frac{1}{11789177} a^{9} - \frac{4575}{11789177} a^{8} + \frac{7715}{11789177} a^{7} + \frac{3622319}{11789177} a^{6} - \frac{2874612}{11789177} a^{5} + \frac{1085963}{11789177} a^{4} + \frac{2262793}{11789177} a^{3} - \frac{1660060}{11789177} a^{2} - \frac{4616698}{11789177} a + \frac{134985}{693481}$, $\frac{1}{234105281708965741691415050010127} a^{10} - \frac{3811932728992253335645644}{234105281708965741691415050010127} a^{9} - \frac{381880175046805883802664354}{234105281708965741691415050010127} a^{8} - \frac{72757612604244502049499620615}{234105281708965741691415050010127} a^{7} + \frac{42142434011858228843760407182349}{234105281708965741691415050010127} a^{6} + \frac{94470515870072841899757140400821}{234105281708965741691415050010127} a^{5} - \frac{107580658038201237094908427002817}{234105281708965741691415050010127} a^{4} - \frac{55382657864013892368490862519574}{234105281708965741691415050010127} a^{3} - \frac{51250447187736430687978629626826}{234105281708965741691415050010127} a^{2} - \frac{58039495700598727411599192838757}{234105281708965741691415050010127} a - \frac{1409610324365850936783279468}{7529195693852820303329207539}$
Class group and class number
$C_{11}$, which has order $11$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 13856724912536.113 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 11 |
| The 11 conjugacy class representatives for $C_{11}$ |
| Character table for $C_{11}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.11.0.1}{11} }$ | ${\href{/LocalNumberField/3.11.0.1}{11} }$ | ${\href{/LocalNumberField/5.11.0.1}{11} }$ | ${\href{/LocalNumberField/7.11.0.1}{11} }$ | R | ${\href{/LocalNumberField/13.11.0.1}{11} }$ | ${\href{/LocalNumberField/17.1.0.1}{1} }^{11}$ | ${\href{/LocalNumberField/19.1.0.1}{1} }^{11}$ | R | ${\href{/LocalNumberField/29.11.0.1}{11} }$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{11}$ | ${\href{/LocalNumberField/37.11.0.1}{11} }$ | ${\href{/LocalNumberField/41.11.0.1}{11} }$ | ${\href{/LocalNumberField/43.11.0.1}{11} }$ | ${\href{/LocalNumberField/47.11.0.1}{11} }$ | ${\href{/LocalNumberField/53.11.0.1}{11} }$ | ${\href{/LocalNumberField/59.1.0.1}{1} }^{11}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.11.20.5 | $x^{11} - 11 x^{10} + 858$ | $11$ | $1$ | $20$ | $C_{11}$ | $[2]$ |
| $23$ | 23.11.10.4 | $x^{11} - 1472$ | $11$ | $1$ | $10$ | $C_{11}$ | $[\ ]_{11}$ |