Properties

Label 11.11.2786968520...4449.2
Degree $11$
Signature $[11, 0]$
Discriminant $11^{20}\cdot 23^{10}$
Root discriminant $1353.24$
Ramified primes $11, 23$
Class number $11$ (GRH)
Class group $[11]$ (GRH)
Galois group $C_{11}$ (as 11T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-84992124733, -83401753347, 22379726501, 4435947417, -506615549, -77350955, 3347190, 528264, -4807, -1265, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^11 - 1265*x^9 - 4807*x^8 + 528264*x^7 + 3347190*x^6 - 77350955*x^5 - 506615549*x^4 + 4435947417*x^3 + 22379726501*x^2 - 83401753347*x - 84992124733)
 
gp: K = bnfinit(x^11 - 1265*x^9 - 4807*x^8 + 528264*x^7 + 3347190*x^6 - 77350955*x^5 - 506615549*x^4 + 4435947417*x^3 + 22379726501*x^2 - 83401753347*x - 84992124733, 1)
 

Normalized defining polynomial

\( x^{11} - 1265 x^{9} - 4807 x^{8} + 528264 x^{7} + 3347190 x^{6} - 77350955 x^{5} - 506615549 x^{4} + 4435947417 x^{3} + 22379726501 x^{2} - 83401753347 x - 84992124733 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $11$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[11, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(27869685209056005146671841116784449=11^{20}\cdot 23^{10}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $1353.24$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $11, 23$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(2783=11^{2}\cdot 23\)
Dirichlet character group:    $\lbrace$$\chi_{2783}(1,·)$, $\chi_{2783}(386,·)$, $\chi_{2783}(1761,·)$, $\chi_{2783}(584,·)$, $\chi_{2783}(716,·)$, $\chi_{2783}(397,·)$, $\chi_{2783}(177,·)$, $\chi_{2783}(694,·)$, $\chi_{2783}(1497,·)$, $\chi_{2783}(1530,·)$, $\chi_{2783}(859,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{323} a^{7} - \frac{5}{323} a^{6} - \frac{160}{323} a^{5} + \frac{7}{323} a^{4} + \frac{115}{323} a^{3} - \frac{84}{323} a^{2} - \frac{89}{323} a - \frac{3}{19}$, $\frac{1}{323} a^{8} + \frac{138}{323} a^{6} - \frac{147}{323} a^{5} + \frac{150}{323} a^{4} - \frac{155}{323} a^{3} + \frac{137}{323} a^{2} + \frac{150}{323} a + \frac{4}{19}$, $\frac{1}{11789177} a^{9} - \frac{4575}{11789177} a^{8} + \frac{7715}{11789177} a^{7} + \frac{3622319}{11789177} a^{6} - \frac{2874612}{11789177} a^{5} + \frac{1085963}{11789177} a^{4} + \frac{2262793}{11789177} a^{3} - \frac{1660060}{11789177} a^{2} - \frac{4616698}{11789177} a + \frac{134985}{693481}$, $\frac{1}{234105281708965741691415050010127} a^{10} - \frac{3811932728992253335645644}{234105281708965741691415050010127} a^{9} - \frac{381880175046805883802664354}{234105281708965741691415050010127} a^{8} - \frac{72757612604244502049499620615}{234105281708965741691415050010127} a^{7} + \frac{42142434011858228843760407182349}{234105281708965741691415050010127} a^{6} + \frac{94470515870072841899757140400821}{234105281708965741691415050010127} a^{5} - \frac{107580658038201237094908427002817}{234105281708965741691415050010127} a^{4} - \frac{55382657864013892368490862519574}{234105281708965741691415050010127} a^{3} - \frac{51250447187736430687978629626826}{234105281708965741691415050010127} a^{2} - \frac{58039495700598727411599192838757}{234105281708965741691415050010127} a - \frac{1409610324365850936783279468}{7529195693852820303329207539}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{11}$, which has order $11$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $10$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 13856724912536.113 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{11}$ (as 11T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 11
The 11 conjugacy class representatives for $C_{11}$
Character table for $C_{11}$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.11.0.1}{11} }$ ${\href{/LocalNumberField/3.11.0.1}{11} }$ ${\href{/LocalNumberField/5.11.0.1}{11} }$ ${\href{/LocalNumberField/7.11.0.1}{11} }$ R ${\href{/LocalNumberField/13.11.0.1}{11} }$ ${\href{/LocalNumberField/17.1.0.1}{1} }^{11}$ ${\href{/LocalNumberField/19.1.0.1}{1} }^{11}$ R ${\href{/LocalNumberField/29.11.0.1}{11} }$ ${\href{/LocalNumberField/31.1.0.1}{1} }^{11}$ ${\href{/LocalNumberField/37.11.0.1}{11} }$ ${\href{/LocalNumberField/41.11.0.1}{11} }$ ${\href{/LocalNumberField/43.11.0.1}{11} }$ ${\href{/LocalNumberField/47.11.0.1}{11} }$ ${\href{/LocalNumberField/53.11.0.1}{11} }$ ${\href{/LocalNumberField/59.1.0.1}{1} }^{11}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$11$11.11.20.5$x^{11} - 11 x^{10} + 858$$11$$1$$20$$C_{11}$$[2]$
$23$23.11.10.4$x^{11} - 1472$$11$$1$$10$$C_{11}$$[\ ]_{11}$