Normalized defining polynomial
\( x^{11} - 1265 x^{9} - 10373 x^{8} + 461472 x^{7} + 7026316 x^{6} - 19353235 x^{5} - 853505367 x^{4} - 3771314393 x^{3} + 11665833289 x^{2} + 103006408615 x + 152668956353 \)
Invariants
| Degree: | $11$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[11, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(27869685209056005146671841116784449=11^{20}\cdot 23^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1353.24$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2783=11^{2}\cdot 23\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2783}(2465,·)$, $\chi_{2783}(133,·)$, $\chi_{2783}(1,·)$, $\chi_{2783}(936,·)$, $\chi_{2783}(1002,·)$, $\chi_{2783}(2124,·)$, $\chi_{2783}(1409,·)$, $\chi_{2783}(2036,·)$, $\chi_{2783}(837,·)$, $\chi_{2783}(2234,·)$, $\chi_{2783}(991,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{643873098778057590850178338274046335308081} a^{10} - \frac{283191993144505533565795257823515501536771}{643873098778057590850178338274046335308081} a^{9} - \frac{195483673600319742998243996887126869989798}{643873098778057590850178338274046335308081} a^{8} - \frac{229718895717206571480077698266460330181609}{643873098778057590850178338274046335308081} a^{7} + \frac{31929819680699788417326643496938822212180}{643873098778057590850178338274046335308081} a^{6} - \frac{196587157576367621235046544554850365502118}{643873098778057590850178338274046335308081} a^{5} - \frac{375968459195859371955072453301569961374}{643873098778057590850178338274046335308081} a^{4} - \frac{297563517420679426234332622672742118960469}{643873098778057590850178338274046335308081} a^{3} + \frac{247442423397740609445510228698568643612788}{643873098778057590850178338274046335308081} a^{2} + \frac{238367505274388557045920022858283115030429}{643873098778057590850178338274046335308081} a - \frac{198438015724935414960691254769883315612615}{643873098778057590850178338274046335308081}$
Class group and class number
$C_{11}$, which has order $11$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2083946923676.7688 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 11 |
| The 11 conjugacy class representatives for $C_{11}$ |
| Character table for $C_{11}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.11.0.1}{11} }$ | ${\href{/LocalNumberField/3.11.0.1}{11} }$ | ${\href{/LocalNumberField/5.11.0.1}{11} }$ | ${\href{/LocalNumberField/7.11.0.1}{11} }$ | R | ${\href{/LocalNumberField/13.11.0.1}{11} }$ | ${\href{/LocalNumberField/17.11.0.1}{11} }$ | ${\href{/LocalNumberField/19.11.0.1}{11} }$ | R | ${\href{/LocalNumberField/29.11.0.1}{11} }$ | ${\href{/LocalNumberField/31.11.0.1}{11} }$ | ${\href{/LocalNumberField/37.11.0.1}{11} }$ | ${\href{/LocalNumberField/41.11.0.1}{11} }$ | ${\href{/LocalNumberField/43.11.0.1}{11} }$ | ${\href{/LocalNumberField/47.11.0.1}{11} }$ | ${\href{/LocalNumberField/53.11.0.1}{11} }$ | ${\href{/LocalNumberField/59.11.0.1}{11} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.11.20.1 | $x^{11} - 11 x^{10} + 374$ | $11$ | $1$ | $20$ | $C_{11}$ | $[2]$ |
| $23$ | 23.11.10.5 | $x^{11} + 184$ | $11$ | $1$ | $10$ | $C_{11}$ | $[\ ]_{11}$ |