Properties

Label 11.11.278...449.1
Degree $11$
Signature $[11, 0]$
Discriminant $2.787\times 10^{34}$
Root discriminant \(1353.24\)
Ramified primes $11,23$
Class number $11$ (GRH)
Class group [11] (GRH)
Galois group $C_{11}$ (as 11T1)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^11 - 1265*x^9 - 4807*x^8 + 544962*x^7 + 4031808*x^6 - 81455880*x^5 - 916234187*x^4 + 714773070*x^3 + 31567681332*x^2 + 58422539890*x - 98108643071)
 
gp: K = bnfinit(y^11 - 1265*y^9 - 4807*y^8 + 544962*y^7 + 4031808*y^6 - 81455880*y^5 - 916234187*y^4 + 714773070*y^3 + 31567681332*y^2 + 58422539890*y - 98108643071, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^11 - 1265*x^9 - 4807*x^8 + 544962*x^7 + 4031808*x^6 - 81455880*x^5 - 916234187*x^4 + 714773070*x^3 + 31567681332*x^2 + 58422539890*x - 98108643071);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^11 - 1265*x^9 - 4807*x^8 + 544962*x^7 + 4031808*x^6 - 81455880*x^5 - 916234187*x^4 + 714773070*x^3 + 31567681332*x^2 + 58422539890*x - 98108643071)
 

\( x^{11} - 1265 x^{9} - 4807 x^{8} + 544962 x^{7} + 4031808 x^{6} - 81455880 x^{5} - 916234187 x^{4} + \cdots - 98108643071 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $11$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[11, 0]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(27869685209056005146671841116784449\) \(\medspace = 11^{20}\cdot 23^{10}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(1353.24\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $11^{20/11}23^{10/11}\approx 1353.24254149841$
Ramified primes:   \(11\), \(23\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Gal(K/\Q) }$:  $11$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(2783=11^{2}\cdot 23\)
Dirichlet character group:    $\lbrace$$\chi_{2783}(1,·)$, $\chi_{2783}(1442,·)$, $\chi_{2783}(1156,·)$, $\chi_{2783}(518,·)$, $\chi_{2783}(2509,·)$, $\chi_{2783}(78,·)$, $\chi_{2783}(463,·)$, $\chi_{2783}(496,·)$, $\chi_{2783}(1112,·)$, $\chi_{2783}(892,·)$, $\chi_{2783}(2718,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{27\!\cdots\!79}a^{10}-\frac{76\!\cdots\!03}{27\!\cdots\!79}a^{9}+\frac{10\!\cdots\!98}{27\!\cdots\!79}a^{8}-\frac{62\!\cdots\!33}{27\!\cdots\!79}a^{7}+\frac{60\!\cdots\!22}{27\!\cdots\!79}a^{6}-\frac{51\!\cdots\!18}{27\!\cdots\!79}a^{5}-\frac{64\!\cdots\!45}{27\!\cdots\!79}a^{4}-\frac{68\!\cdots\!15}{27\!\cdots\!79}a^{3}+\frac{11\!\cdots\!82}{27\!\cdots\!79}a^{2}+\frac{15\!\cdots\!10}{27\!\cdots\!79}a-\frac{50\!\cdots\!27}{72\!\cdots\!13}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  $1$
Inessential primes:  None

Class group and class number

$C_{11}$, which has order $11$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $10$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{18\!\cdots\!20}{27\!\cdots\!79}a^{10}-\frac{14\!\cdots\!54}{27\!\cdots\!79}a^{9}-\frac{22\!\cdots\!66}{27\!\cdots\!79}a^{8}+\frac{87\!\cdots\!44}{27\!\cdots\!79}a^{7}+\frac{92\!\cdots\!28}{27\!\cdots\!79}a^{6}-\frac{14\!\cdots\!71}{27\!\cdots\!79}a^{5}-\frac{14\!\cdots\!40}{27\!\cdots\!79}a^{4}-\frac{49\!\cdots\!19}{27\!\cdots\!79}a^{3}+\frac{52\!\cdots\!10}{27\!\cdots\!79}a^{2}+\frac{16\!\cdots\!99}{27\!\cdots\!79}a-\frac{58\!\cdots\!09}{72\!\cdots\!13}$, $\frac{10\!\cdots\!57}{27\!\cdots\!79}a^{10}+\frac{52\!\cdots\!35}{27\!\cdots\!79}a^{9}-\frac{10\!\cdots\!87}{27\!\cdots\!79}a^{8}-\frac{70\!\cdots\!13}{27\!\cdots\!79}a^{7}+\frac{30\!\cdots\!31}{27\!\cdots\!79}a^{6}+\frac{23\!\cdots\!97}{27\!\cdots\!79}a^{5}-\frac{26\!\cdots\!24}{27\!\cdots\!79}a^{4}-\frac{16\!\cdots\!33}{27\!\cdots\!79}a^{3}+\frac{75\!\cdots\!55}{27\!\cdots\!79}a^{2}+\frac{30\!\cdots\!89}{27\!\cdots\!79}a-\frac{10\!\cdots\!66}{72\!\cdots\!13}$, $\frac{48\!\cdots\!22}{27\!\cdots\!79}a^{10}-\frac{21\!\cdots\!13}{27\!\cdots\!79}a^{9}-\frac{60\!\cdots\!85}{27\!\cdots\!79}a^{8}+\frac{32\!\cdots\!82}{27\!\cdots\!79}a^{7}+\frac{26\!\cdots\!41}{27\!\cdots\!79}a^{6}+\frac{79\!\cdots\!30}{27\!\cdots\!79}a^{5}-\frac{42\!\cdots\!01}{27\!\cdots\!79}a^{4}-\frac{25\!\cdots\!86}{27\!\cdots\!79}a^{3}+\frac{14\!\cdots\!46}{27\!\cdots\!79}a^{2}+\frac{88\!\cdots\!03}{27\!\cdots\!79}a-\frac{28\!\cdots\!89}{72\!\cdots\!13}$, $\frac{61\!\cdots\!95}{27\!\cdots\!79}a^{10}+\frac{88\!\cdots\!28}{27\!\cdots\!79}a^{9}-\frac{57\!\cdots\!80}{27\!\cdots\!79}a^{8}-\frac{10\!\cdots\!10}{27\!\cdots\!79}a^{7}+\frac{10\!\cdots\!39}{27\!\cdots\!79}a^{6}+\frac{31\!\cdots\!60}{27\!\cdots\!79}a^{5}+\frac{15\!\cdots\!44}{27\!\cdots\!79}a^{4}-\frac{71\!\cdots\!74}{27\!\cdots\!79}a^{3}-\frac{70\!\cdots\!21}{27\!\cdots\!79}a^{2}-\frac{91\!\cdots\!18}{27\!\cdots\!79}a+\frac{48\!\cdots\!73}{72\!\cdots\!13}$, $\frac{12\!\cdots\!91}{27\!\cdots\!79}a^{10}-\frac{28\!\cdots\!86}{27\!\cdots\!79}a^{9}-\frac{94\!\cdots\!13}{27\!\cdots\!79}a^{8}+\frac{18\!\cdots\!72}{27\!\cdots\!79}a^{7}+\frac{28\!\cdots\!39}{27\!\cdots\!79}a^{6}-\frac{32\!\cdots\!14}{27\!\cdots\!79}a^{5}-\frac{41\!\cdots\!67}{27\!\cdots\!79}a^{4}+\frac{94\!\cdots\!61}{27\!\cdots\!79}a^{3}+\frac{12\!\cdots\!09}{27\!\cdots\!79}a^{2}-\frac{33\!\cdots\!42}{27\!\cdots\!79}a-\frac{30\!\cdots\!94}{72\!\cdots\!13}$, $\frac{17\!\cdots\!67}{27\!\cdots\!79}a^{10}-\frac{16\!\cdots\!98}{27\!\cdots\!79}a^{9}-\frac{20\!\cdots\!12}{27\!\cdots\!79}a^{8}+\frac{13\!\cdots\!56}{27\!\cdots\!79}a^{7}+\frac{83\!\cdots\!41}{27\!\cdots\!79}a^{6}-\frac{19\!\cdots\!49}{27\!\cdots\!79}a^{5}-\frac{12\!\cdots\!55}{27\!\cdots\!79}a^{4}-\frac{24\!\cdots\!19}{27\!\cdots\!79}a^{3}+\frac{40\!\cdots\!53}{27\!\cdots\!79}a^{2}+\frac{10\!\cdots\!71}{27\!\cdots\!79}a-\frac{40\!\cdots\!98}{72\!\cdots\!13}$, $\frac{21\!\cdots\!80}{27\!\cdots\!79}a^{10}+\frac{43\!\cdots\!50}{27\!\cdots\!79}a^{9}-\frac{19\!\cdots\!62}{27\!\cdots\!79}a^{8}-\frac{49\!\cdots\!19}{27\!\cdots\!79}a^{7}+\frac{22\!\cdots\!18}{27\!\cdots\!79}a^{6}+\frac{13\!\cdots\!27}{27\!\cdots\!79}a^{5}+\frac{10\!\cdots\!47}{27\!\cdots\!79}a^{4}-\frac{15\!\cdots\!51}{27\!\cdots\!79}a^{3}-\frac{33\!\cdots\!36}{27\!\cdots\!79}a^{2}-\frac{55\!\cdots\!70}{27\!\cdots\!79}a+\frac{26\!\cdots\!79}{72\!\cdots\!13}$, $\frac{35\!\cdots\!04}{27\!\cdots\!79}a^{10}-\frac{66\!\cdots\!05}{27\!\cdots\!79}a^{9}-\frac{32\!\cdots\!33}{27\!\cdots\!79}a^{8}+\frac{44\!\cdots\!53}{27\!\cdots\!79}a^{7}+\frac{11\!\cdots\!03}{27\!\cdots\!79}a^{6}-\frac{69\!\cdots\!94}{27\!\cdots\!79}a^{5}-\frac{16\!\cdots\!56}{27\!\cdots\!79}a^{4}-\frac{91\!\cdots\!83}{27\!\cdots\!79}a^{3}+\frac{55\!\cdots\!30}{27\!\cdots\!79}a^{2}+\frac{10\!\cdots\!11}{27\!\cdots\!79}a-\frac{66\!\cdots\!82}{72\!\cdots\!13}$, $\frac{17\!\cdots\!13}{27\!\cdots\!79}a^{10}-\frac{15\!\cdots\!82}{27\!\cdots\!79}a^{9}-\frac{20\!\cdots\!85}{27\!\cdots\!79}a^{8}+\frac{10\!\cdots\!86}{27\!\cdots\!79}a^{7}+\frac{83\!\cdots\!93}{27\!\cdots\!79}a^{6}-\frac{82\!\cdots\!29}{27\!\cdots\!79}a^{5}-\frac{13\!\cdots\!04}{27\!\cdots\!79}a^{4}-\frac{35\!\cdots\!55}{27\!\cdots\!79}a^{3}+\frac{44\!\cdots\!46}{27\!\cdots\!79}a^{2}+\frac{12\!\cdots\!44}{27\!\cdots\!79}a-\frac{47\!\cdots\!15}{72\!\cdots\!13}$, $\frac{11\!\cdots\!80}{27\!\cdots\!79}a^{10}+\frac{13\!\cdots\!44}{27\!\cdots\!79}a^{9}-\frac{14\!\cdots\!80}{27\!\cdots\!79}a^{8}-\frac{72\!\cdots\!88}{27\!\cdots\!79}a^{7}+\frac{62\!\cdots\!91}{27\!\cdots\!79}a^{6}+\frac{53\!\cdots\!28}{27\!\cdots\!79}a^{5}-\frac{88\!\cdots\!42}{27\!\cdots\!79}a^{4}-\frac{11\!\cdots\!21}{27\!\cdots\!79}a^{3}-\frac{45\!\cdots\!71}{27\!\cdots\!79}a^{2}+\frac{36\!\cdots\!62}{27\!\cdots\!79}a+\frac{28\!\cdots\!09}{72\!\cdots\!13}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 2524169127627.655 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{11}\cdot(2\pi)^{0}\cdot 2524169127627.655 \cdot 11}{2\cdot\sqrt{27869685209056005146671841116784449}}\cr\approx \mathstrut & 0.170311926223595 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^11 - 1265*x^9 - 4807*x^8 + 544962*x^7 + 4031808*x^6 - 81455880*x^5 - 916234187*x^4 + 714773070*x^3 + 31567681332*x^2 + 58422539890*x - 98108643071)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^11 - 1265*x^9 - 4807*x^8 + 544962*x^7 + 4031808*x^6 - 81455880*x^5 - 916234187*x^4 + 714773070*x^3 + 31567681332*x^2 + 58422539890*x - 98108643071, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^11 - 1265*x^9 - 4807*x^8 + 544962*x^7 + 4031808*x^6 - 81455880*x^5 - 916234187*x^4 + 714773070*x^3 + 31567681332*x^2 + 58422539890*x - 98108643071);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^11 - 1265*x^9 - 4807*x^8 + 544962*x^7 + 4031808*x^6 - 81455880*x^5 - 916234187*x^4 + 714773070*x^3 + 31567681332*x^2 + 58422539890*x - 98108643071);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{11}$ (as 11T1):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A cyclic group of order 11
The 11 conjugacy class representatives for $C_{11}$
Character table for $C_{11}$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.
sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.11.0.1}{11} }$ ${\href{/padicField/3.11.0.1}{11} }$ ${\href{/padicField/5.11.0.1}{11} }$ ${\href{/padicField/7.11.0.1}{11} }$ R ${\href{/padicField/13.11.0.1}{11} }$ ${\href{/padicField/17.11.0.1}{11} }$ ${\href{/padicField/19.11.0.1}{11} }$ R ${\href{/padicField/29.11.0.1}{11} }$ ${\href{/padicField/31.11.0.1}{11} }$ ${\href{/padicField/37.11.0.1}{11} }$ ${\href{/padicField/41.11.0.1}{11} }$ ${\href{/padicField/43.11.0.1}{11} }$ ${\href{/padicField/47.11.0.1}{11} }$ ${\href{/padicField/53.11.0.1}{11} }$ ${\href{/padicField/59.11.0.1}{11} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(11\) Copy content Toggle raw display 11.11.20.7$x^{11} + 110 x^{10} + 1100$$11$$1$$20$$C_{11}$$[2]$
\(23\) Copy content Toggle raw display 23.11.10.9$x^{11} + 46$$11$$1$$10$$C_{11}$$[\ ]_{11}$