Normalized defining polynomial
\( x^{11} - x^{10} - 310 x^{9} + 395 x^{8} + 26441 x^{7} - 57583 x^{6} - 744575 x^{5} + 2220564 x^{4} + 2568726 x^{3} - 5088204 x^{2} - 1360638 x + 996543 \)
Invariants
| Degree: | $11$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[11, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(22090575837180674640752471449=683^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $377.35$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $683$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(683\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{683}(64,·)$, $\chi_{683}(1,·)$, $\chi_{683}(555,·)$, $\chi_{683}(4,·)$, $\chi_{683}(681,·)$, $\chi_{683}(651,·)$, $\chi_{683}(256,·)$, $\chi_{683}(16,·)$, $\chi_{683}(675,·)$, $\chi_{683}(171,·)$, $\chi_{683}(341,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{3} a^{4} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{5} - \frac{1}{3} a$, $\frac{1}{9} a^{6} + \frac{1}{9} a^{4} - \frac{2}{9} a^{2}$, $\frac{1}{27} a^{7} + \frac{1}{27} a^{5} + \frac{1}{9} a^{4} - \frac{2}{27} a^{3} - \frac{4}{9} a^{2} + \frac{1}{3} a$, $\frac{1}{81} a^{8} + \frac{1}{81} a^{7} + \frac{4}{81} a^{6} + \frac{4}{81} a^{5} + \frac{13}{81} a^{4} + \frac{4}{81} a^{3} + \frac{1}{9} a^{2} - \frac{4}{9} a$, $\frac{1}{2997} a^{9} - \frac{5}{999} a^{8} - \frac{14}{999} a^{7} + \frac{13}{999} a^{6} + \frac{11}{111} a^{5} - \frac{56}{999} a^{4} - \frac{130}{2997} a^{3} - \frac{86}{333} a^{2} - \frac{164}{333} a - \frac{15}{37}$, $\frac{1}{3096157918956615348903} a^{10} + \frac{65672983335599183}{3096157918956615348903} a^{9} - \frac{14643011641585023205}{3096157918956615348903} a^{8} + \frac{38742542531418914798}{3096157918956615348903} a^{7} - \frac{1616444581971221230}{3096157918956615348903} a^{6} - \frac{181932441362609436238}{3096157918956615348903} a^{5} - \frac{305598504763960815500}{3096157918956615348903} a^{4} - \frac{132103551701768734396}{1032052639652205116301} a^{3} - \frac{167616275696478305290}{344017546550735038767} a^{2} + \frac{9149111634645699652}{114672515516911679589} a - \frac{5519091770903465777}{12741390612990186621}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2276941413140 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 11 |
| The 11 conjugacy class representatives for $C_{11}$ |
| Character table for $C_{11}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.11.0.1}{11} }$ | ${\href{/LocalNumberField/3.1.0.1}{1} }^{11}$ | ${\href{/LocalNumberField/5.11.0.1}{11} }$ | ${\href{/LocalNumberField/7.11.0.1}{11} }$ | ${\href{/LocalNumberField/11.11.0.1}{11} }$ | ${\href{/LocalNumberField/13.11.0.1}{11} }$ | ${\href{/LocalNumberField/17.11.0.1}{11} }$ | ${\href{/LocalNumberField/19.11.0.1}{11} }$ | ${\href{/LocalNumberField/23.11.0.1}{11} }$ | ${\href{/LocalNumberField/29.11.0.1}{11} }$ | ${\href{/LocalNumberField/31.11.0.1}{11} }$ | ${\href{/LocalNumberField/37.1.0.1}{1} }^{11}$ | ${\href{/LocalNumberField/41.11.0.1}{11} }$ | ${\href{/LocalNumberField/43.11.0.1}{11} }$ | ${\href{/LocalNumberField/47.11.0.1}{11} }$ | ${\href{/LocalNumberField/53.11.0.1}{11} }$ | ${\href{/LocalNumberField/59.11.0.1}{11} }$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 683 | Data not computed | ||||||