Properties

Label 11.11.182...449.1
Degree $11$
Signature $[11, 0]$
Discriminant $1.823\times 10^{18}$
Root discriminant \(45.72\)
Ramified prime $67$
Class number $1$
Class group trivial
Galois group $C_{11}$ (as 11T1)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^11 - x^10 - 30*x^9 + 63*x^8 + 220*x^7 - 698*x^6 - 101*x^5 + 1960*x^4 - 1758*x^3 + 35*x^2 + 243*x + 29)
 
gp: K = bnfinit(y^11 - y^10 - 30*y^9 + 63*y^8 + 220*y^7 - 698*y^6 - 101*y^5 + 1960*y^4 - 1758*y^3 + 35*y^2 + 243*y + 29, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^11 - x^10 - 30*x^9 + 63*x^8 + 220*x^7 - 698*x^6 - 101*x^5 + 1960*x^4 - 1758*x^3 + 35*x^2 + 243*x + 29);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^11 - x^10 - 30*x^9 + 63*x^8 + 220*x^7 - 698*x^6 - 101*x^5 + 1960*x^4 - 1758*x^3 + 35*x^2 + 243*x + 29)
 

\( x^{11} - x^{10} - 30 x^{9} + 63 x^{8} + 220 x^{7} - 698 x^{6} - 101 x^{5} + 1960 x^{4} - 1758 x^{3} + 35 x^{2} + 243 x + 29 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $11$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[11, 0]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(1822837804551761449\) \(\medspace = 67^{10}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(45.72\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $67^{10/11}\approx 45.71597667454237$
Ramified primes:   \(67\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Gal(K/\Q) }$:  $11$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(67\)
Dirichlet character group:    $\lbrace$$\chi_{67}(64,·)$, $\chi_{67}(1,·)$, $\chi_{67}(40,·)$, $\chi_{67}(9,·)$, $\chi_{67}(14,·)$, $\chi_{67}(15,·)$, $\chi_{67}(22,·)$, $\chi_{67}(24,·)$, $\chi_{67}(25,·)$, $\chi_{67}(59,·)$, $\chi_{67}(62,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{256447}a^{10}-\frac{92780}{256447}a^{9}-\frac{120859}{256447}a^{8}+\frac{32149}{256447}a^{7}-\frac{16794}{256447}a^{6}-\frac{42144}{256447}a^{5}+\frac{30666}{256447}a^{4}+\frac{4159}{8843}a^{3}-\frac{104882}{256447}a^{2}-\frac{34302}{256447}a-\frac{61}{8843}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $10$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{347046}{256447}a^{10}+\frac{300993}{256447}a^{9}-\frac{9931968}{256447}a^{8}+\frac{3276036}{256447}a^{7}+\frac{84864402}{256447}a^{6}-\frac{85361724}{256447}a^{5}-\frac{214427556}{256447}a^{4}+\frac{10577239}{8843}a^{3}+\frac{6337548}{256447}a^{2}-\frac{63444561}{256447}a-\frac{300326}{8843}$, $\frac{202849}{256447}a^{10}+\frac{58663}{256447}a^{9}-\frac{5948819}{256447}a^{8}+\frac{5074231}{256447}a^{7}+\frac{49233666}{256447}a^{6}-\frac{75346482}{256447}a^{5}-\frac{101107563}{256447}a^{4}+\frac{8109293}{8843}a^{3}-\frac{87044784}{256447}a^{2}-\frac{11490062}{256447}a+\frac{41783}{8843}$, $\frac{396984}{256447}a^{10}+\frac{281302}{256447}a^{9}-\frac{11447247}{256447}a^{8}+\frac{5426154}{256447}a^{7}+\frac{97096776}{256447}a^{6}-\frac{111189414}{256447}a^{5}-\frac{234020304}{256447}a^{4}+\frac{13155996}{8843}a^{3}-\frac{37182230}{256447}a^{2}-\frac{62582536}{256447}a-\frac{251494}{8843}$, $\frac{2881780}{256447}a^{10}+\frac{2145376}{256447}a^{9}-\frac{82747950}{256447}a^{8}+\frac{37178792}{256447}a^{7}+\frac{699908383}{256447}a^{6}-\frac{791166373}{256447}a^{5}-\frac{1679980805}{256447}a^{4}+\frac{94114391}{8843}a^{3}-\frac{286149294}{256447}a^{2}-\frac{436716840}{256447}a-\frac{1705282}{8843}$, $\frac{648138}{256447}a^{10}+\frac{526284}{256447}a^{9}-\frac{18499894}{256447}a^{8}+\frac{7337434}{256447}a^{7}+\frac{156239566}{256447}a^{6}-\frac{170212922}{256447}a^{5}-\frac{377101917}{256447}a^{4}+\frac{20545384}{8843}a^{3}-\frac{53405720}{256447}a^{2}-\frac{98489106}{256447}a-\frac{397300}{8843}$, $\frac{793968}{256447}a^{10}+\frac{562604}{256447}a^{9}-\frac{22894494}{256447}a^{8}+\frac{10852308}{256447}a^{7}+\frac{194193552}{256447}a^{6}-\frac{222378828}{256447}a^{5}-\frac{468040608}{256447}a^{4}+\frac{26311992}{8843}a^{3}-\frac{74108013}{256447}a^{2}-\frac{124652178}{256447}a-\frac{502988}{8843}$, $a^{10}+a^{9}-28a^{8}+7a^{7}+234a^{6}-230a^{5}-561a^{4}+838a^{3}-82a^{2}-129a-15$, $\frac{1038950}{256447}a^{10}+\frac{799595}{256447}a^{9}-\frac{29753269}{256447}a^{8}+\frac{12829938}{256447}a^{7}+\frac{251332746}{256447}a^{6}-\frac{281070379}{256447}a^{5}-\frac{602928583}{256447}a^{4}+\frac{33588302}{8843}a^{3}-\frac{102581483}{256447}a^{2}-\frac{155286639}{256447}a-\frac{617179}{8843}$, $\frac{659504}{256447}a^{10}+\frac{498868}{256447}a^{9}-\frac{18909603}{256447}a^{8}+\frac{8331781}{256447}a^{7}+\frac{159745788}{256447}a^{6}-\frac{179667169}{256447}a^{5}-\frac{382449021}{256447}a^{4}+\frac{21390828}{8843}a^{3}-\frac{68402802}{256447}a^{2}-\frac{96258175}{256447}a-\frac{365500}{8843}$, $\frac{239689}{256447}a^{10}+\frac{225526}{256447}a^{9}-\frac{6730906}{256447}a^{8}+\frac{2093781}{256447}a^{7}+\frac{56273386}{256447}a^{6}-\frac{58732249}{256447}a^{5}-\frac{134102821}{256447}a^{4}+\frac{7255264}{8843}a^{3}-\frac{23668306}{256447}a^{2}-\frac{33459368}{256447}a-\frac{127352}{8843}$ Copy content Toggle raw display
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 330512.248088 \)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{11}\cdot(2\pi)^{0}\cdot 330512.248088 \cdot 1}{2\cdot\sqrt{1822837804551761449}}\cr\approx \mathstrut & 0.250676430123 \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^11 - x^10 - 30*x^9 + 63*x^8 + 220*x^7 - 698*x^6 - 101*x^5 + 1960*x^4 - 1758*x^3 + 35*x^2 + 243*x + 29)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^11 - x^10 - 30*x^9 + 63*x^8 + 220*x^7 - 698*x^6 - 101*x^5 + 1960*x^4 - 1758*x^3 + 35*x^2 + 243*x + 29, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^11 - x^10 - 30*x^9 + 63*x^8 + 220*x^7 - 698*x^6 - 101*x^5 + 1960*x^4 - 1758*x^3 + 35*x^2 + 243*x + 29);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^11 - x^10 - 30*x^9 + 63*x^8 + 220*x^7 - 698*x^6 - 101*x^5 + 1960*x^4 - 1758*x^3 + 35*x^2 + 243*x + 29);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{11}$ (as 11T1):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A cyclic group of order 11
The 11 conjugacy class representatives for $C_{11}$
Character table for $C_{11}$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.
sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.11.0.1}{11} }$ ${\href{/padicField/3.11.0.1}{11} }$ ${\href{/padicField/5.11.0.1}{11} }$ ${\href{/padicField/7.11.0.1}{11} }$ ${\href{/padicField/11.11.0.1}{11} }$ ${\href{/padicField/13.11.0.1}{11} }$ ${\href{/padicField/17.11.0.1}{11} }$ ${\href{/padicField/19.11.0.1}{11} }$ ${\href{/padicField/23.11.0.1}{11} }$ ${\href{/padicField/29.1.0.1}{1} }^{11}$ ${\href{/padicField/31.11.0.1}{11} }$ ${\href{/padicField/37.1.0.1}{1} }^{11}$ ${\href{/padicField/41.11.0.1}{11} }$ ${\href{/padicField/43.11.0.1}{11} }$ ${\href{/padicField/47.11.0.1}{11} }$ ${\href{/padicField/53.11.0.1}{11} }$ ${\href{/padicField/59.11.0.1}{11} }$

Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(67\) Copy content Toggle raw display 67.11.10.1$x^{11} + 67$$11$$1$$10$$C_{11}$$[\ ]_{11}$