Normalized defining polynomial
\( x^{11} - x^{10} - 190 x^{9} + 547 x^{8} + 10985 x^{7} - 51221 x^{6} - 141765 x^{5} + 1224028 x^{4} - 2399676 x^{3} + 1263744 x^{2} + 873500 x - 785489 \)
Invariants
| Degree: | $11$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[11, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(166778563814477267272573801=419^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $242.01$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $419$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(419\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{419}(129,·)$, $\chi_{419}(69,·)$, $\chi_{419}(102,·)$, $\chi_{419}(1,·)$, $\chi_{419}(169,·)$, $\chi_{419}(300,·)$, $\chi_{419}(13,·)$, $\chi_{419}(334,·)$, $\chi_{419}(152,·)$, $\chi_{419}(59,·)$, $\chi_{419}(348,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{7} a^{6} - \frac{1}{7}$, $\frac{1}{7} a^{7} - \frac{1}{7} a$, $\frac{1}{7} a^{8} - \frac{1}{7} a^{2}$, $\frac{1}{5537} a^{9} - \frac{246}{5537} a^{8} + \frac{241}{5537} a^{7} - \frac{80}{5537} a^{6} + \frac{1}{113} a^{5} + \frac{17}{113} a^{4} - \frac{57}{5537} a^{3} + \frac{1429}{5537} a^{2} + \frac{2139}{5537} a + \frac{1228}{5537}$, $\frac{1}{6935321084327411153} a^{10} + \frac{28135467939379}{6935321084327411153} a^{9} - \frac{468466111472408428}{6935321084327411153} a^{8} - \frac{1679438060851387}{34850859720238247} a^{7} + \frac{438970130273034}{14478749654128207} a^{6} - \frac{43345154487319583}{141537164986273697} a^{5} + \frac{20102708070478772}{77924956003678777} a^{4} + \frac{1018537295517919104}{6935321084327411153} a^{3} - \frac{1456307496345536}{14478749654128207} a^{2} + \frac{1982582314766429689}{6935321084327411153} a - \frac{1060606824264002241}{6935321084327411153}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 13726169613.8 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 11 |
| The 11 conjugacy class representatives for $C_{11}$ |
| Character table for $C_{11}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.11.0.1}{11} }$ | ${\href{/LocalNumberField/3.11.0.1}{11} }$ | ${\href{/LocalNumberField/5.11.0.1}{11} }$ | ${\href{/LocalNumberField/7.1.0.1}{1} }^{11}$ | ${\href{/LocalNumberField/11.11.0.1}{11} }$ | ${\href{/LocalNumberField/13.11.0.1}{11} }$ | ${\href{/LocalNumberField/17.11.0.1}{11} }$ | ${\href{/LocalNumberField/19.11.0.1}{11} }$ | ${\href{/LocalNumberField/23.11.0.1}{11} }$ | ${\href{/LocalNumberField/29.11.0.1}{11} }$ | ${\href{/LocalNumberField/31.11.0.1}{11} }$ | ${\href{/LocalNumberField/37.11.0.1}{11} }$ | ${\href{/LocalNumberField/41.11.0.1}{11} }$ | ${\href{/LocalNumberField/43.11.0.1}{11} }$ | ${\href{/LocalNumberField/47.1.0.1}{1} }^{11}$ | ${\href{/LocalNumberField/53.11.0.1}{11} }$ | ${\href{/LocalNumberField/59.11.0.1}{11} }$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 419 | Data not computed | ||||||