Normalized defining polynomial
\( x^{11} - x^{10} - 150 x^{9} + 402 x^{8} + 6577 x^{7} - 28617 x^{6} - 62124 x^{5} + 475464 x^{4} - 343344 x^{3} - 1913488 x^{2} + 4015168 x - 2287616 \)
Invariants
| Degree: | $11$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[11, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(15786284949774657045043801=331^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $195.32$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $331$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(331\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{331}(1,·)$, $\chi_{331}(293,·)$, $\chi_{331}(167,·)$, $\chi_{331}(74,·)$, $\chi_{331}(270,·)$, $\chi_{331}(111,·)$, $\chi_{331}(80,·)$, $\chi_{331}(274,·)$, $\chi_{331}(180,·)$, $\chi_{331}(85,·)$, $\chi_{331}(120,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{4} - \frac{1}{4} a^{3} - \frac{1}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{8} a^{5} - \frac{1}{8} a^{3}$, $\frac{1}{16} a^{6} - \frac{1}{16} a^{5} - \frac{1}{16} a^{4} - \frac{3}{16} a^{3} + \frac{1}{4} a$, $\frac{1}{32} a^{7} - \frac{1}{16} a^{4} + \frac{7}{32} a^{3} + \frac{1}{16} a^{2} - \frac{1}{4} a$, $\frac{1}{512} a^{8} - \frac{1}{64} a^{7} - \frac{3}{256} a^{6} + \frac{1}{512} a^{4} + \frac{3}{64} a^{3} + \frac{1}{128} a^{2} + \frac{7}{32} a$, $\frac{1}{84992} a^{9} + \frac{17}{21248} a^{8} + \frac{61}{42496} a^{7} + \frac{11}{10624} a^{6} - \frac{3359}{84992} a^{5} + \frac{177}{21248} a^{4} - \frac{4711}{21248} a^{3} + \frac{425}{2656} a^{2} + \frac{17}{1328} a + \frac{28}{83}$, $\frac{1}{4274757632} a^{10} - \frac{16987}{4274757632} a^{9} + \frac{395191}{534344704} a^{8} - \frac{26290239}{2137378816} a^{7} + \frac{24525597}{4274757632} a^{6} - \frac{236300475}{4274757632} a^{5} + \frac{22458545}{2137378816} a^{4} - \frac{233792547}{1068689408} a^{3} - \frac{69172087}{534344704} a^{2} - \frac{59016867}{133586176} a - \frac{1449553}{4174568}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1340143683620 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 11 |
| The 11 conjugacy class representatives for $C_{11}$ |
| Character table for $C_{11}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.1.0.1}{1} }^{11}$ | ${\href{/LocalNumberField/3.11.0.1}{11} }$ | ${\href{/LocalNumberField/5.11.0.1}{11} }$ | ${\href{/LocalNumberField/7.11.0.1}{11} }$ | ${\href{/LocalNumberField/11.11.0.1}{11} }$ | ${\href{/LocalNumberField/13.11.0.1}{11} }$ | ${\href{/LocalNumberField/17.11.0.1}{11} }$ | ${\href{/LocalNumberField/19.11.0.1}{11} }$ | ${\href{/LocalNumberField/23.11.0.1}{11} }$ | ${\href{/LocalNumberField/29.11.0.1}{11} }$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{11}$ | ${\href{/LocalNumberField/37.11.0.1}{11} }$ | ${\href{/LocalNumberField/41.11.0.1}{11} }$ | ${\href{/LocalNumberField/43.11.0.1}{11} }$ | ${\href{/LocalNumberField/47.11.0.1}{11} }$ | ${\href{/LocalNumberField/53.11.0.1}{11} }$ | ${\href{/LocalNumberField/59.11.0.1}{11} }$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 331 | Data not computed | ||||||