Normalized defining polynomial
\( x^{11} - 89045 x^{9} - 1016268 x^{8} + 1999274189 x^{7} + 17620911770 x^{6} - 14713278229518 x^{5} - 142840655647272 x^{4} + 38125562570421876 x^{3} + 562256553231789768 x^{2} - 26705329205451737544 x - 432518584183431877728 \)
Invariants
| Degree: | $11$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[11, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(130527521176011960658406976951299254564347331584000000=2^{16}\cdot 3^{4}\cdot 5^{6}\cdot 11^{12}\cdot 13^{4}\cdot 17^{4}\cdot 347^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $67{,}406.25$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 11, 13, 17, 347$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{3} a^{5} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{6} a^{6} - \frac{1}{6} a^{4} - \frac{1}{3} a^{3} - \frac{1}{6} a^{2}$, $\frac{1}{36} a^{7} - \frac{5}{36} a^{5} + \frac{17}{36} a^{3} - \frac{5}{18} a^{2} + \frac{1}{6} a$, $\frac{1}{648} a^{8} + \frac{1}{108} a^{7} + \frac{19}{648} a^{6} - \frac{5}{36} a^{5} + \frac{41}{648} a^{4} + \frac{37}{81} a^{3} + \frac{7}{108} a^{2} + \frac{7}{18} a - \frac{1}{3}$, $\frac{1}{7776} a^{9} - \frac{1}{1296} a^{8} + \frac{1}{7776} a^{7} - \frac{53}{1296} a^{6} - \frac{13}{7776} a^{5} + \frac{59}{1944} a^{4} - \frac{25}{54} a^{2} - \frac{11}{24} a - \frac{1}{6}$, $\frac{1}{77090518032876356986361559183128194281316998903760442131223557956419187462048} a^{10} + \frac{124063824109717207811410820816235999591526460332528610331902001644178931}{6424209836073029748863463265260682856776416575313370177601963163034932288504} a^{9} - \frac{30597807054012888555543053361993098289895970225172927598092080875412361839}{77090518032876356986361559183128194281316998903760442131223557956419187462048} a^{8} + \frac{42592973244605563039613474060573141846843421147995757643993945015708696547}{6424209836073029748863463265260682856776416575313370177601963163034932288504} a^{7} - \frac{3397979810222696923522279559141674664025155511576946326608907042382619090629}{77090518032876356986361559183128194281316998903760442131223557956419187462048} a^{6} - \frac{4491702218155769171317456389211903186928899129985277764783598497025513890159}{38545259016438178493180779591564097140658499451880221065611778978209593731024} a^{5} + \frac{299148794936799968956450836957272292047159246211406195311013301522315106125}{2141403278691009916287821088420227618925472191771123392533987721011644096168} a^{4} - \frac{1061960809164069760108824405780150496372038977921181730234038934933019189}{3304634689337978265876267111759610523033136098412227457614178581808092741} a^{3} + \frac{321158168580254997512153695310359398427903871437781495873542425398227646989}{713801092897003305429273696140075872975157397257041130844662573670548032056} a^{2} + \frac{56136894784153294320012583393770847842758659479514119210015353338553716385}{118966848816167217571545616023345978829192899542840188474110428945091338676} a + \frac{244584859911029288428486644452659479364159664353985251664878389434216105}{583170827530231458684047137369343033476435782072746021931913867377898719}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $10$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6854659729190000000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$M_{11}$ (as 11T6):
| A non-solvable group of order 7920 |
| The 10 conjugacy class representatives for $M_{11}$ |
| Character table for $M_{11}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.11.0.1}{11} }$ | R | R | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/23.11.0.1}{11} }$ | ${\href{/LocalNumberField/29.11.0.1}{11} }$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.11.0.1}{11} }$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.4.8.5 | $x^{4} + 2 x^{2} + 4 x + 6$ | $4$ | $1$ | $8$ | $D_{4}$ | $[2, 3]^{2}$ | |
| 2.4.6.6 | $x^{4} - 20$ | $2$ | $2$ | $6$ | $D_{4}$ | $[2, 3]^{2}$ | |
| $3$ | $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| $5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.8.6.3 | $x^{8} + 25 x^{4} + 200$ | $4$ | $2$ | $6$ | $C_8$ | $[\ ]_{4}^{2}$ | |
| $11$ | 11.11.12.4 | $x^{11} + 110 x^{2} + 11$ | $11$ | $1$ | $12$ | $C_{11}:C_5$ | $[6/5]_{5}$ |
| $13$ | 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 13.3.0.1 | $x^{3} - 2 x + 6$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 13.6.3.1 | $x^{6} - 52 x^{4} + 676 x^{2} - 79092$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $17$ | $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 347 | Data not computed | ||||||