Properties

Label 11.1.751...896.1
Degree $11$
Signature $[1, 5]$
Discriminant $-7.513\times 10^{31}$
Root discriminant \(790.31\)
Ramified primes $2,11,13$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $S_{11}$ (as 11T8)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^11 - 484*x^7 + 58564*x^3 - 1362944)
 
gp: K = bnfinit(y^11 - 484*y^7 + 58564*y^3 - 1362944, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^11 - 484*x^7 + 58564*x^3 - 1362944);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^11 - 484*x^7 + 58564*x^3 - 1362944)
 

\( x^{11} - 484x^{7} + 58564x^{3} - 1362944 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $11$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[1, 5]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-75125419892107285091969606352896\) \(\medspace = -\,2^{33}\cdot 11^{20}\cdot 13\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(790.31\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{97/24}11^{20/11}13^{1/2}\approx 4645.9637941866895$
Ramified primes:   \(2\), \(11\), \(13\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-26}) \)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{22}a^{4}$, $\frac{1}{88}a^{5}+\frac{1}{4}a$, $\frac{1}{352}a^{6}+\frac{5}{16}a^{2}$, $\frac{1}{352}a^{7}+\frac{5}{16}a^{3}$, $\frac{1}{3872}a^{8}-\frac{3}{176}a^{4}$, $\frac{1}{3872}a^{9}-\frac{1}{176}a^{5}+\frac{1}{4}a$, $\frac{1}{77440}a^{10}+\frac{1}{19360}a^{9}-\frac{1}{19360}a^{8}+\frac{1}{1760}a^{7}-\frac{1}{880}a^{6}+\frac{1}{880}a^{5}+\frac{19}{880}a^{4}+\frac{21}{80}a^{3}+\frac{19}{160}a^{2}+\frac{1}{10}a+\frac{2}{5}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $5$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{24\!\cdots\!57}{19360}a^{10}+\frac{17\!\cdots\!69}{9680}a^{9}-\frac{15\!\cdots\!99}{9680}a^{8}-\frac{23\!\cdots\!21}{5}a^{7}-\frac{96\!\cdots\!17}{220}a^{6}+\frac{20\!\cdots\!59}{440}a^{5}+\frac{25\!\cdots\!71}{40}a^{4}+\frac{38\!\cdots\!73}{5}a^{3}-\frac{39\!\cdots\!37}{40}a^{2}-\frac{11\!\cdots\!87}{10}a-\frac{59\!\cdots\!49}{5}$, $\frac{90\!\cdots\!89}{38720}a^{10}+\frac{84\!\cdots\!57}{4840}a^{9}+\frac{79\!\cdots\!11}{9680}a^{8}+\frac{25\!\cdots\!89}{80}a^{7}+\frac{14\!\cdots\!47}{880}a^{6}-\frac{20\!\cdots\!71}{440}a^{5}-\frac{11\!\cdots\!59}{40}a^{4}-\frac{49\!\cdots\!81}{40}a^{3}-\frac{26\!\cdots\!59}{80}a^{2}-\frac{12\!\cdots\!29}{20}a-\frac{23\!\cdots\!49}{5}$, $\frac{64\!\cdots\!19}{1210}a^{10}+\frac{10\!\cdots\!43}{9680}a^{9}+\frac{22\!\cdots\!99}{19360}a^{8}-\frac{28\!\cdots\!57}{880}a^{7}-\frac{50\!\cdots\!87}{1760}a^{6}-\frac{29\!\cdots\!47}{440}a^{5}-\frac{95\!\cdots\!51}{80}a^{4}-\frac{28\!\cdots\!97}{40}a^{3}+\frac{30\!\cdots\!77}{80}a^{2}+\frac{11\!\cdots\!71}{10}a+\frac{15\!\cdots\!77}{5}$, $\frac{11\!\cdots\!19}{4840}a^{10}+\frac{20\!\cdots\!79}{19360}a^{9}+\frac{22\!\cdots\!19}{4840}a^{8}+\frac{35\!\cdots\!49}{1760}a^{7}-\frac{30\!\cdots\!63}{110}a^{6}-\frac{10\!\cdots\!91}{880}a^{5}-\frac{10\!\cdots\!91}{20}a^{4}-\frac{18\!\cdots\!91}{80}a^{3}+\frac{38\!\cdots\!71}{10}a^{2}+\frac{34\!\cdots\!43}{20}a+\frac{37\!\cdots\!13}{5}$, $\frac{17\!\cdots\!23}{38720}a^{10}-\frac{68\!\cdots\!51}{4840}a^{9}+\frac{26\!\cdots\!03}{2420}a^{8}+\frac{56\!\cdots\!23}{880}a^{7}-\frac{10\!\cdots\!43}{440}a^{6}+\frac{39\!\cdots\!71}{55}a^{5}-\frac{44\!\cdots\!27}{10}a^{4}-\frac{14\!\cdots\!37}{40}a^{3}+\frac{32\!\cdots\!77}{80}a^{2}-\frac{98\!\cdots\!09}{10}a+\frac{87\!\cdots\!87}{5}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 1430081294600 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{1}\cdot(2\pi)^{5}\cdot 1430081294600 \cdot 1}{2\cdot\sqrt{75125419892107285091969606352896}}\cr\approx \mathstrut & 1.61572190055419 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^11 - 484*x^7 + 58564*x^3 - 1362944)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^11 - 484*x^7 + 58564*x^3 - 1362944, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^11 - 484*x^7 + 58564*x^3 - 1362944);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^11 - 484*x^7 + 58564*x^3 - 1362944);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$S_{11}$ (as 11T8):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 39916800
The 56 conjugacy class representatives for $S_{11}$
Character table for $S_{11}$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.
sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 22 sibling: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.7.0.1}{7} }{,}\,{\href{/padicField/3.3.0.1}{3} }{,}\,{\href{/padicField/3.1.0.1}{1} }$ ${\href{/padicField/5.7.0.1}{7} }{,}\,{\href{/padicField/5.2.0.1}{2} }^{2}$ ${\href{/padicField/7.6.0.1}{6} }{,}\,{\href{/padicField/7.4.0.1}{4} }{,}\,{\href{/padicField/7.1.0.1}{1} }$ R R ${\href{/padicField/17.11.0.1}{11} }$ ${\href{/padicField/19.5.0.1}{5} }{,}\,{\href{/padicField/19.4.0.1}{4} }{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ ${\href{/padicField/23.4.0.1}{4} }^{2}{,}\,{\href{/padicField/23.2.0.1}{2} }{,}\,{\href{/padicField/23.1.0.1}{1} }$ ${\href{/padicField/29.5.0.1}{5} }{,}\,{\href{/padicField/29.4.0.1}{4} }{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ ${\href{/padicField/31.11.0.1}{11} }$ ${\href{/padicField/37.4.0.1}{4} }{,}\,{\href{/padicField/37.3.0.1}{3} }{,}\,{\href{/padicField/37.2.0.1}{2} }{,}\,{\href{/padicField/37.1.0.1}{1} }^{2}$ ${\href{/padicField/41.5.0.1}{5} }{,}\,{\href{/padicField/41.2.0.1}{2} }^{3}$ ${\href{/padicField/43.5.0.1}{5} }{,}\,{\href{/padicField/43.4.0.1}{4} }{,}\,{\href{/padicField/43.2.0.1}{2} }$ ${\href{/padicField/47.9.0.1}{9} }{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ ${\href{/padicField/53.8.0.1}{8} }{,}\,{\href{/padicField/53.3.0.1}{3} }$ ${\href{/padicField/59.4.0.1}{4} }^{2}{,}\,{\href{/padicField/59.2.0.1}{2} }{,}\,{\href{/padicField/59.1.0.1}{1} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.3.2.1$x^{3} + 2$$3$$1$$2$$S_3$$[\ ]_{3}^{2}$
2.8.31.180$x^{8} + 16 x^{7} + 12 x^{4} + 8 x^{2} + 16 x + 18$$8$$1$$31$$D_{8}$$[2, 3, 4, 5]$
\(11\) Copy content Toggle raw display 11.11.20.20$x^{11} + 55 x^{10} + 11$$11$$1$$20$$F_{11}$$[2]^{10}$
\(13\) Copy content Toggle raw display 13.2.1.2$x^{2} + 26$$2$$1$$1$$C_2$$[\ ]_{2}$
13.9.0.1$x^{9} + 12 x^{4} + 8 x^{3} + 12 x^{2} + 12 x + 11$$1$$9$$0$$C_9$$[\ ]^{9}$