Normalized defining polynomial
\( x^{11} - 55 x^{9} - 330 x^{8} - 990 x^{7} - 1848 x^{6} - 2310 x^{5} - 1980 x^{4} - 1155 x^{3} - 440 x^{2} - 99 x + 109999999990 \)
Invariants
| Degree: | $11$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-67274999493256000920100000000000=-\,2^{11}\cdot 5^{11}\cdot 11^{20}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $782.42$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{10} a^{2} + \frac{1}{10} a$, $\frac{1}{100} a^{3} + \frac{1}{50} a^{2} - \frac{9}{100} a - \frac{1}{10}$, $\frac{1}{1000} a^{4} + \frac{3}{1000} a^{3} - \frac{7}{1000} a^{2} - \frac{119}{1000} a - \frac{11}{100}$, $\frac{1}{10000} a^{5} + \frac{1}{2500} a^{4} - \frac{1}{2500} a^{3} - \frac{63}{5000} a^{2} - \frac{1229}{10000} a - \frac{111}{1000}$, $\frac{1}{100000} a^{6} - \frac{1}{20000} a^{5} - \frac{1}{2500} a^{4} - \frac{9}{10000} a^{3} - \frac{19}{20000} a^{2} - \frac{49}{100000} a - \frac{1}{10000}$, $\frac{1}{1000000} a^{7} - \frac{1}{250000} a^{6} - \frac{9}{200000} a^{5} - \frac{13}{100000} a^{4} - \frac{37}{200000} a^{3} - \frac{9}{62500} a^{2} - \frac{59}{1000000} a - \frac{1}{100000}$, $\frac{1}{10000000} a^{8} - \frac{3}{10000000} a^{7} - \frac{49}{10000000} a^{6} - \frac{7}{400000} a^{5} - \frac{63}{2000000} a^{4} - \frac{329}{10000000} a^{3} - \frac{203}{10000000} a^{2} - \frac{69}{10000000} a - \frac{1}{1000000}$, $\frac{1}{100000000} a^{9} - \frac{1}{50000000} a^{8} + \frac{3}{6250000} a^{7} + \frac{47}{12500000} a^{6} + \frac{1}{10000000} a^{5} - \frac{3411}{25000000} a^{4} - \frac{18629}{12500000} a^{3} - \frac{171209}{12500000} a^{2} - \frac{12344979}{100000000} a - \frac{1111101}{10000000}$, $\frac{1}{1000000000} a^{10} - \frac{1}{1000000000} a^{9} + \frac{23}{500000000} a^{8} + \frac{53}{125000000} a^{7} + \frac{193}{500000000} a^{6} - \frac{6817}{500000000} a^{5} - \frac{40669}{250000000} a^{4} - \frac{94919}{62500000} a^{3} - \frac{13714651}{1000000000} a^{2} - \frac{123455989}{1000000000} a - \frac{11111101}{100000000}$
Class group and class number
$C_{11}$, which has order $11$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 159707280519 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_{11}$ (as 11T8):
| A non-solvable group of order 39916800 |
| The 56 conjugacy class representatives for $S_{11}$ are not computed |
| Character table for $S_{11}$ is not computed |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Degree 22 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/7.11.0.1}{11} }$ | R | ${\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }$ | ${\href{/LocalNumberField/31.9.0.1}{9} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.7.0.1}{7} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.9.0.1}{9} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.7.0.1}{7} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }$ | ${\href{/LocalNumberField/47.7.0.1}{7} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.9.0.1}{9} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 2.2.3.4 | $x^{2} + 10$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.8.8.2 | $x^{8} + 2 x^{7} + 8 x^{2} + 48$ | $2$ | $4$ | $8$ | $C_2^2:C_4$ | $[2, 2]^{4}$ | |
| $5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 5.5.5.4 | $x^{5} + 10 x + 5$ | $5$ | $1$ | $5$ | $F_5$ | $[5/4]_{4}$ | |
| 5.5.6.2 | $x^{5} + 15 x^{2} + 5$ | $5$ | $1$ | $6$ | $D_{5}$ | $[3/2]_{2}$ | |
| $11$ | 11.11.20.10 | $x^{11} - 11 x^{10} + 132$ | $11$ | $1$ | $20$ | $C_{11}$ | $[2]$ |