Properties

Label 11.1.380...727.2
Degree $11$
Signature $[1, 5]$
Discriminant $-3.803\times 10^{27}$
Root discriminant \(321.57\)
Ramified primes $3,11,13$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $S_{11}$ (as 11T8)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^11 - 33*x^9 - 17537553)
 
gp: K = bnfinit(y^11 - 33*y^9 - 17537553, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^11 - 33*x^9 - 17537553);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^11 - 33*x^9 - 17537553)
 

\( x^{11} - 33x^{9} - 17537553 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $11$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[1, 5]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-3802786437878517362765933727\) \(\medspace = -\,3^{14}\cdot 11^{19}\cdot 13\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(321.57\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $3^{31/18}11^{199/110}13^{1/2}\approx 1830.8574991422927$
Ramified primes:   \(3\), \(11\), \(13\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-143}) \)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $\frac{1}{3}a^{2}$, $\frac{1}{9}a^{3}+\frac{1}{3}a$, $\frac{1}{27}a^{4}+\frac{1}{9}a^{2}$, $\frac{1}{243}a^{5}-\frac{2}{81}a^{3}+\frac{1}{3}a$, $\frac{1}{729}a^{6}-\frac{2}{243}a^{4}+\frac{1}{9}a^{2}$, $\frac{1}{6561}a^{7}-\frac{2}{2187}a^{5}+\frac{1}{81}a^{4}-\frac{2}{81}a^{3}-\frac{2}{27}a^{2}+\frac{1}{3}a$, $\frac{1}{59049}a^{8}-\frac{11}{19683}a^{6}-\frac{1}{729}a^{5}+\frac{11}{243}a^{3}+\frac{1}{9}a^{2}+\frac{1}{3}$, $\frac{1}{177147}a^{9}-\frac{2}{59049}a^{7}-\frac{1}{2187}a^{6}-\frac{2}{2187}a^{5}-\frac{7}{729}a^{4}+\frac{1}{81}a^{3}+\frac{4}{27}a^{2}+\frac{1}{9}a$, $\frac{1}{531441}a^{10}+\frac{1}{177147}a^{8}+\frac{10}{19683}a^{6}-\frac{1}{729}a^{5}+\frac{2}{243}a^{4}+\frac{11}{243}a^{3}-\frac{4}{27}a^{2}+\frac{1}{3}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $5$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{332835674}{177147}a^{10}-\frac{4047305188}{177147}a^{9}+\frac{2639042252}{59049}a^{8}+\frac{29586032477}{59049}a^{7}-\frac{2820704968}{729}a^{6}+\frac{11089383802}{729}a^{5}-\frac{18543590063}{729}a^{4}-\frac{3314815417}{27}a^{3}+\frac{11327275850}{9}a^{2}-\frac{50177333767}{9}a+11161167370$, $\frac{4439519305}{531441}a^{10}+\frac{8308820006}{177147}a^{9}-\frac{10611527309}{177147}a^{8}-\frac{42773777575}{59049}a^{7}-\frac{92751546478}{19683}a^{6}-\frac{17475658606}{729}a^{5}-\frac{73949895920}{729}a^{4}-\frac{84748296053}{243}a^{3}-\frac{22119772621}{27}a^{2}+\frac{2530283414}{9}a+\frac{55950746162}{3}$, $\frac{11\!\cdots\!11}{531441}a^{10}-\frac{33\!\cdots\!54}{177147}a^{9}-\frac{23\!\cdots\!56}{177147}a^{8}-\frac{22\!\cdots\!19}{59049}a^{7}-\frac{10\!\cdots\!23}{2187}a^{6}+\frac{80\!\cdots\!44}{2187}a^{5}+\frac{29\!\cdots\!42}{729}a^{4}+\frac{20\!\cdots\!52}{81}a^{3}+\frac{34\!\cdots\!01}{27}a^{2}+\frac{47\!\cdots\!27}{9}a+17\!\cdots\!07$, $\frac{13\!\cdots\!34}{531441}a^{10}-\frac{483239505081575}{59049}a^{9}-\frac{13\!\cdots\!83}{177147}a^{8}+\frac{76\!\cdots\!45}{19683}a^{7}-\frac{19\!\cdots\!41}{19683}a^{6}-\frac{623424563002537}{729}a^{5}+\frac{19\!\cdots\!03}{81}a^{4}-\frac{31\!\cdots\!07}{243}a^{3}+\frac{10\!\cdots\!59}{27}a^{2}+\frac{8333380272253}{3}a-\frac{21\!\cdots\!74}{3}$, $\frac{533805033664}{531441}a^{10}-\frac{408400948457}{177147}a^{9}-\frac{6574720353638}{177147}a^{8}+\frac{8454158571157}{59049}a^{7}-\frac{4180768835845}{19683}a^{6}-\frac{2831209330868}{2187}a^{5}+\frac{8704261164296}{729}a^{4}-\frac{12298766706740}{243}a^{3}+\frac{871194025054}{9}a^{2}+\frac{2910441609154}{9}a-\frac{11332145416270}{3}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 6934535437.05 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{1}\cdot(2\pi)^{5}\cdot 6934535437.05 \cdot 1}{2\cdot\sqrt{3802786437878517362765933727}}\cr\approx \mathstrut & 1.10119884051 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^11 - 33*x^9 - 17537553)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^11 - 33*x^9 - 17537553, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^11 - 33*x^9 - 17537553);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^11 - 33*x^9 - 17537553);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$S_{11}$ (as 11T8):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 39916800
The 56 conjugacy class representatives for $S_{11}$ are not computed
Character table for $S_{11}$ is not computed

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.
sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 22 sibling: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.11.0.1}{11} }$ R ${\href{/padicField/5.5.0.1}{5} }{,}\,{\href{/padicField/5.4.0.1}{4} }{,}\,{\href{/padicField/5.1.0.1}{1} }^{2}$ ${\href{/padicField/7.5.0.1}{5} }{,}\,{\href{/padicField/7.4.0.1}{4} }{,}\,{\href{/padicField/7.2.0.1}{2} }$ R R ${\href{/padicField/17.5.0.1}{5} }{,}\,{\href{/padicField/17.3.0.1}{3} }{,}\,{\href{/padicField/17.2.0.1}{2} }{,}\,{\href{/padicField/17.1.0.1}{1} }$ ${\href{/padicField/19.8.0.1}{8} }{,}\,{\href{/padicField/19.2.0.1}{2} }{,}\,{\href{/padicField/19.1.0.1}{1} }$ ${\href{/padicField/23.6.0.1}{6} }{,}\,{\href{/padicField/23.4.0.1}{4} }{,}\,{\href{/padicField/23.1.0.1}{1} }$ ${\href{/padicField/29.6.0.1}{6} }{,}\,{\href{/padicField/29.5.0.1}{5} }$ ${\href{/padicField/31.9.0.1}{9} }{,}\,{\href{/padicField/31.2.0.1}{2} }$ ${\href{/padicField/37.8.0.1}{8} }{,}\,{\href{/padicField/37.3.0.1}{3} }$ ${\href{/padicField/41.7.0.1}{7} }{,}\,{\href{/padicField/41.2.0.1}{2} }^{2}$ ${\href{/padicField/43.6.0.1}{6} }{,}\,{\href{/padicField/43.3.0.1}{3} }{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ ${\href{/padicField/47.8.0.1}{8} }{,}\,{\href{/padicField/47.1.0.1}{1} }^{3}$ ${\href{/padicField/53.11.0.1}{11} }$ ${\href{/padicField/59.7.0.1}{7} }{,}\,{\href{/padicField/59.2.0.1}{2} }{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(3\) Copy content Toggle raw display 3.2.1.2$x^{2} + 3$$2$$1$$1$$C_2$$[\ ]_{2}$
3.3.4.3$x^{3} + 6 x^{2} + 12$$3$$1$$4$$C_3$$[2]$
3.6.9.15$x^{6} + 6 x^{5} + 6 x^{4} + 3$$6$$1$$9$$S_3\times C_3$$[3/2, 2]_{2}$
\(11\) Copy content Toggle raw display 11.11.19.5$x^{11} + 110 x^{9} + 11$$11$$1$$19$$F_{11}$$[19/10]_{10}$
\(13\) Copy content Toggle raw display 13.2.1.2$x^{2} + 26$$2$$1$$1$$C_2$$[\ ]_{2}$
13.9.0.1$x^{9} + 12 x^{4} + 8 x^{3} + 12 x^{2} + 12 x + 11$$1$$9$$0$$C_9$$[\ ]^{9}$