Normalized defining polynomial
\( x^{11} - 5 x^{10} + 21 x^{9} - 95 x^{8} + 231 x^{7} - 567 x^{6} + 1152 x^{5} - 1716 x^{4} + 2000 x^{3} + \cdots - 256 \)
Invariants
| Degree: | $11$ |
| |
| Signature: | $[1, 5]$ |
| |
| Discriminant: |
\(-151917743390062651\)
\(\medspace = -\,2731^{5}\)
|
| |
| Root discriminant: | \(36.47\) |
| |
| Galois root discriminant: | $2731^{1/2}\approx 52.25897052181568$ | ||
| Ramified primes: |
\(2731\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{-2731}) \) | ||
| $\Aut(K/\Q)$: | $C_1$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2}a^{4}-\frac{1}{2}a$, $\frac{1}{4}a^{5}-\frac{1}{4}a^{2}-\frac{1}{2}a$, $\frac{1}{4}a^{6}-\frac{1}{4}a^{3}-\frac{1}{2}a^{2}$, $\frac{1}{4}a^{7}-\frac{1}{4}a^{4}-\frac{1}{2}a^{3}$, $\frac{1}{48}a^{8}-\frac{1}{16}a^{7}+\frac{1}{16}a^{6}+\frac{1}{16}a^{5}+\frac{3}{16}a^{4}-\frac{3}{16}a^{3}-\frac{1}{8}a^{2}+\frac{1}{4}a-\frac{1}{3}$, $\frac{1}{2016}a^{9}+\frac{5}{2016}a^{8}-\frac{5}{224}a^{7}+\frac{73}{672}a^{6}+\frac{9}{224}a^{5}+\frac{13}{672}a^{4}+\frac{5}{48}a^{3}-\frac{17}{56}a^{2}-\frac{8}{63}a+\frac{5}{63}$, $\frac{1}{28224}a^{10}-\frac{1}{4032}a^{9}+\frac{11}{1344}a^{8}+\frac{925}{9408}a^{7}-\frac{3}{3136}a^{6}+\frac{25}{9408}a^{5}-\frac{715}{4704}a^{4}-\frac{381}{784}a^{3}+\frac{1}{882}a^{2}-\frac{277}{882}a-\frac{17}{147}$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $2$, $3$ |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | Trivial group, which has order $1$ (assuming GRH) |
|
Unit group
| Rank: | $5$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{17}{3136}a^{10}-\frac{1}{64}a^{9}+\frac{23}{448}a^{8}-\frac{859}{3136}a^{7}+\frac{955}{3136}a^{6}-\frac{3051}{3136}a^{5}+\frac{1217}{784}a^{4}-\frac{669}{784}a^{3}+\frac{125}{196}a^{2}-\frac{101}{196}a-\frac{6}{49}$, $\frac{83}{4032}a^{10}-\frac{109}{1344}a^{9}+\frac{1375}{4032}a^{8}-\frac{2047}{1344}a^{7}+\frac{3767}{1344}a^{6}-\frac{10471}{1344}a^{5}+\frac{157}{12}a^{4}-\frac{5479}{336}a^{3}+\frac{2171}{126}a^{2}-\frac{869}{84}a+\frac{32}{9}$, $\frac{11}{2016}a^{10}-\frac{15}{224}a^{9}+\frac{571}{2016}a^{8}-\frac{715}{672}a^{7}+\frac{341}{96}a^{6}-\frac{4315}{672}a^{5}+\frac{1759}{168}a^{4}-\frac{499}{42}a^{3}+\frac{2465}{252}a^{2}-\frac{13}{2}a+\frac{121}{63}$, $\frac{1269}{1568}a^{10}-\frac{1753}{672}a^{9}+\frac{2661}{224}a^{8}-\frac{85289}{1568}a^{7}+\frac{131273}{1568}a^{6}-\frac{439093}{1568}a^{5}+\frac{309933}{784}a^{4}-\frac{418029}{784}a^{3}+\frac{191361}{392}a^{2}-\frac{170203}{588}a+\frac{2848}{49}$, $\frac{1}{126}a^{10}-\frac{23}{672}a^{9}+\frac{257}{2016}a^{8}-\frac{335}{672}a^{7}+\frac{517}{672}a^{6}-\frac{131}{96}a^{5}-\frac{19}{672}a^{4}+\frac{199}{168}a^{3}-\frac{137}{63}a^{2}+\frac{289}{84}a-\frac{157}{63}$
|
| |
| Regulator: | \( 165581.985356 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{1}\cdot(2\pi)^{5}\cdot 165581.985356 \cdot 1}{2\cdot\sqrt{151917743390062651}}\cr\approx \mathstrut & 4.16014221213 \end{aligned}\] (assuming GRH)
Galois group
| A solvable group of order 22 |
| The 7 conjugacy class representatives for $D_{11}$ |
| Character table for $D_{11}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Galois closure: | deg 22 |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.2.0.1}{2} }^{5}{,}\,{\href{/padicField/2.1.0.1}{1} }$ | ${\href{/padicField/3.2.0.1}{2} }^{5}{,}\,{\href{/padicField/3.1.0.1}{1} }$ | ${\href{/padicField/5.11.0.1}{11} }$ | ${\href{/padicField/7.2.0.1}{2} }^{5}{,}\,{\href{/padicField/7.1.0.1}{1} }$ | ${\href{/padicField/11.2.0.1}{2} }^{5}{,}\,{\href{/padicField/11.1.0.1}{1} }$ | ${\href{/padicField/13.11.0.1}{11} }$ | ${\href{/padicField/17.2.0.1}{2} }^{5}{,}\,{\href{/padicField/17.1.0.1}{1} }$ | ${\href{/padicField/19.11.0.1}{11} }$ | ${\href{/padicField/23.11.0.1}{11} }$ | ${\href{/padicField/29.11.0.1}{11} }$ | ${\href{/padicField/31.11.0.1}{11} }$ | ${\href{/padicField/37.11.0.1}{11} }$ | ${\href{/padicField/41.11.0.1}{11} }$ | ${\href{/padicField/43.11.0.1}{11} }$ | ${\href{/padicField/47.11.0.1}{11} }$ | ${\href{/padicField/53.11.0.1}{11} }$ | ${\href{/padicField/59.2.0.1}{2} }^{5}{,}\,{\href{/padicField/59.1.0.1}{1} }$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2731\)
| $\Q_{2731}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |