Normalized defining polynomial
sage: x = polygen(QQ); K.<a> = NumberField(x^11 - x^10 + 5*x^9 - 4*x^8 + 10*x^7 - 6*x^6 + 11*x^5 - 7*x^4 + 9*x^3 - 4*x^2 + 2*x + 1)
gp: K = bnfinit(x^11 - x^10 + 5*x^9 - 4*x^8 + 10*x^7 - 6*x^6 + 11*x^5 - 7*x^4 + 9*x^3 - 4*x^2 + 2*x + 1, 1)
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 2, -4, 9, -7, 11, -6, 10, -4, 5, -1, 1]);
\( x^{11} - x^{10} + 5 x^{9} - 4 x^{8} + 10 x^{7} - 6 x^{6} + 11 x^{5} - 7 x^{4} + 9 x^{3} - 4 x^{2} + 2 x + 1 \)
sage: K.defining_polynomial()
gp: K.pol
magma: DefiningPolynomial(K);
Invariants
Degree: | $11$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[1, 5]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(-129891985607\)\(\medspace = -\,167^{5}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $10.24$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $167$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $1$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{17} a^{10} + \frac{1}{17} a^{9} + \frac{7}{17} a^{8} - \frac{7}{17} a^{7} - \frac{4}{17} a^{6} + \frac{3}{17} a^{5} - \frac{7}{17} a^{3} - \frac{5}{17} a^{2} + \frac{3}{17} a + \frac{8}{17}$
sage: K.integral_basis()
gp: K.zk
magma: IntegralBasis(K);
Class group and class number
Trivial group, which has order $1$
sage: K.class_group().invariants()
gp: K.clgp
magma: ClassGroup(K);
Unit group
sage: UK = K.unit_group()
magma: UK, f := UnitGroup(K);
Rank: | $5$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 9.67372434998 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
sage: K.galois_group(type='pari')
gp: polgalois(K.pol)
magma: GaloisGroup(K);
A solvable group of order 22 |
The 7 conjugacy class representatives for $D_{11}$ |
Character table for $D_{11}$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/LocalNumberField/2.11.0.1}{11} }$ | ${\href{/LocalNumberField/3.11.0.1}{11} }$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ | ${\href{/LocalNumberField/7.11.0.1}{11} }$ | ${\href{/LocalNumberField/11.11.0.1}{11} }$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.11.0.1}{11} }$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.11.0.1}{11} }$ | ${\href{/LocalNumberField/31.11.0.1}{11} }$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.11.0.1}{11} }$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
gp: idealfactors = idealprimedec(K, p); \\ get the data
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
magma: idealfactors := Factorization(p*Integers(K)); // get the data
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
$167$ | $\Q_{167}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
167.2.1.2 | $x^{2} + 334$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
167.2.1.2 | $x^{2} + 334$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
167.2.1.2 | $x^{2} + 334$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
167.2.1.2 | $x^{2} + 334$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
167.2.1.2 | $x^{2} + 334$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |