/* Data is in the following format Note, if the class group has not been computed, it, the class number, the fundamental units, regulator and whether grh was assumed are all 0. [polynomial, degree, t-number of Galois group, signature [r,s], discriminant, list of ramifying primes, integral basis as polynomials in a, 1 if it is a cm field otherwise 0, class number, class group structure, 1 if grh was assumed and 0 if not, fundamental units, regulator, list of subfields each as a pair [polynomial, number of subfields isomorphic to one defined by this polynomial] ] */ [x^11 + 1936*x^7 + 937024*x^3 - 261685248, 11, 8, [1, 5], -113745664595103668651172135526465536, [2, 3, 11], [1, a, 1/2*a^2, 1/4*a^3, 1/88*a^4, 1/704*a^5 + 3/8*a, 1/2816*a^6 - 5/32*a^2, 1/5632*a^7 - 5/64*a^3, 1/61952*a^8 + 3/704*a^4, 1/123904*a^9 - 1/1408*a^5 - 1/4*a, 1/32215040*a^10 + 1/1006720*a^9 - 1/2013440*a^8 + 3/183040*a^7 - 23/183040*a^6 + 1/4160*a^5 - 19/22880*a^4 + 57/2080*a^3 + 909/4160*a^2 + 61/520*a - 16/65], 0, 22, [22], 1, [ (95933265867803116279951982936610338762021726779839697)/(32215040)*a^(10) + (10558471887970068608912635138601789478793623188604261)/(732160)*a^(9) + (3195697038995423221930925034239069232007468919759007)/(45760)*a^(8) + (15475693336540240972572483996176961177450280697510799)/(45760)*a^(7) + (677520189581499951930563638230601692421282903485439427)/(91520)*a^(6) + (3281003973572513620295012515619638848039911168508785329)/(91520)*a^(5) + (90277308673669544632874531652357166973080409658634903)/(520)*a^(4) + (437182851576280213359577641475895717854729887948200771)/(520)*a^(3) + (28544969352679318370166474827009510214299170789849410683)/(4160)*a^(2) + (8639609500926579156241050968768229937547315519778539271)/(260)*a + (10459685754960477071246087795555471681605058867908827473)/(65) , (8409796548076849188255661154397813566934697034071865996499)/(32215040)*a^(10) + (5090729456383490753004585542145210441124047581447546820651)/(4026880)*a^(9) + (24652702357244929401533973508318657420481431461742368036527)/(4026880)*a^(8) + (493325632424812402195224553912161704936976129633959971957)/(16640)*a^(7) + (29696721465974580736395302233853279454294091990690003540937)/(45760)*a^(6) + (17976412849062807701485513132072124767710047838206875692873)/(5720)*a^(5) + (696430103726202657724079905965308667654302571586229792896533)/(45760)*a^(4) + (153299016886634837249023454190944336508468305710411063452453)/(2080)*a^(3) + (2502337250333196937333877658453141382683814483380568372048541)/(4160)*a^(2) + (1514747934418218878243689334965913924311374270814254311108589)/(520)*a + (916927286487360309227588712120006826615874112494835709276121)/(65) , (660309640536845477248827272152888095389590563749691)/(1610752)*a^(10) + (455893082674196879701920329534925093333494153528215)/(73216)*a^(9) - (21247061307250052316944401043482218000876920027753621)/(805376)*a^(8) - (6720929291440107632918864158782555674969881421380419)/(73216)*a^(7) + (1947620724002580922063209567772214213268944115406725)/(1144)*a^(6) + (13819952142513626156650290329329225416161403881855583)/(1144)*a^(5) - (680652127761352827217114411400239889605867508375085191)/(9152)*a^(4) - (98899876567787188057541719184120941216582428123434017)/(832)*a^(3) + (538483377722272531151207694519814936351025416271346429)/(208)*a^(2) + (337222040042301743443535928498355823255301833374565283)/(104)*a - (967976392370829043506678691232281584262805900742691031)/(13) , (48829178444711670522000299526745223176513998102564088133982281)/(16107520)*a^(10) - (190211691079262107006828120341993640978910124324282089381920837)/(4026880)*a^(9) + (902491408686894174820803098828431933905808428941296995422452613)/(2013440)*a^(8) - (208381482722396251129631778472705756584692968684519886403829569)/(183040)*a^(7) - (321416510639946221279715823242465627892259700553769329596356301)/(183040)*a^(6) + (229473956488533611010158188947403484229818279117885958716288371)/(22880)*a^(5) + (1276690713598749732062570037978274377039466214593424259147967727)/(22880)*a^(4) - (2281240754756809788554046846920141401505095862371731120733205811)/(2080)*a^(3) + (371335829492724581415505194483623083305382548246030527847921927)/(65)*a^(2) - (31894282318913923881723973641376883315849184597001138358540033793)/(520)*a + (15344544105856413255145051113423883661337224849385243938202399073)/(65) , (2023767884075038859650668614604922107667710812525359403195988083272857)/(251680)*a^(10) + (164343457091981188186177507145553186023324643227806474133092283771040129)/(4026880)*a^(9) - (2876868557829350448750898664926075410739647884538470041132725610771249187)/(4026880)*a^(8) + (422215881120372937760586356194349994556173410373114490995410781921818769)/(91520)*a^(7) + (498097825135429808045091107728324269726293139166247412753494828695223961)/(91520)*a^(6) - (1431218235084133250169034945510252456078689653667205741304296540947273129)/(45760)*a^(5) + (2021326260857417446891749875255441871016303970286453034049726758214891647)/(45760)*a^(4) + (1013285452063515218042579471105600636771099543139361954202907496527189471)/(1040)*a^(3) - (3186944838664790039442320032782639878104756395443853426177421657478976549)/(1040)*a^(2) + (11797910539775325103090225781637134215677476240766501987029206961803916579)/(130)*a - (43977082895301091846063683507886457890703686234089396763880624731095845671)/(65) ], 6235339295590, []]