Properties

Label 10.6.32633173828125.1
Degree $10$
Signature $[6, 2]$
Discriminant $3^{2}\cdot 5^{10}\cdot 13^{5}$
Root discriminant $22.46$
Ramified primes $3, 5, 13$
Class number $1$
Class group Trivial
Galois group $(D_5 \wr C_2):C_2$ (as 10T27)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-3, -5, 25, 5, -50, -1, 35, 0, -10, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^10 - 10*x^8 + 35*x^6 - x^5 - 50*x^4 + 5*x^3 + 25*x^2 - 5*x - 3)
 
gp: K = bnfinit(x^10 - 10*x^8 + 35*x^6 - x^5 - 50*x^4 + 5*x^3 + 25*x^2 - 5*x - 3, 1)
 

Normalized defining polynomial

\( x^{10} - 10 x^{8} + 35 x^{6} - x^{5} - 50 x^{4} + 5 x^{3} + 25 x^{2} - 5 x - 3 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $10$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[6, 2]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(32633173828125=3^{2}\cdot 5^{10}\cdot 13^{5}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $22.46$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 5, 13$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  \( a^{8} - a^{7} - 8 a^{6} + 7 a^{5} + 20 a^{4} - 14 a^{3} - 16 a^{2} + 7 a + 2 \),  \( a^{9} - 9 a^{7} - a^{6} + 27 a^{5} + 6 a^{4} - 30 a^{3} - 9 a^{2} + 9 a + 2 \),  \( a^{4} - 4 a^{2} - a + 2 \),  \( a^{2} - 2 \),  \( a^{8} - a^{7} - 7 a^{6} + 7 a^{5} + 13 a^{4} - 14 a^{3} - 3 a^{2} + 7 a - 2 \),  \( a^{8} - 7 a^{6} + 14 a^{4} - a^{3} - 8 a^{2} + 2 a + 1 \),  \( a^{5} - 4 a^{3} + 3 a - 1 \)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 2329.1722904 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$D_5\wr C_2:C_2$ (as 10T27):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 400
The 16 conjugacy class representatives for $(D_5 \wr C_2):C_2$
Character table for $(D_5 \wr C_2):C_2$

Intermediate fields

\(\Q(\sqrt{13}) \)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 10 siblings: data not computed
Degree 20 siblings: data not computed
Degree 25 sibling: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.10.0.1}{10} }$ R R ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }$ R ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/19.10.0.1}{10} }$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/29.5.0.1}{5} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ ${\href{/LocalNumberField/31.10.0.1}{10} }$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/47.10.0.1}{10} }$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$3$$\Q_{3}$$x + 1$$1$$1$$0$Trivial$[\ ]$
$\Q_{3}$$x + 1$$1$$1$$0$Trivial$[\ ]$
3.4.0.1$x^{4} - x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
3.4.2.2$x^{4} - 3 x^{2} + 18$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
$5$5.10.10.14$x^{10} + 10 x^{6} + 10 x^{5} + 100 x^{2} + 50 x + 25$$5$$2$$10$$(C_5^2 : C_4) : C_2$$[5/4, 5/4]_{4}^{2}$
$13$13.2.1.1$x^{2} - 13$$2$$1$$1$$C_2$$[\ ]_{2}$
13.8.4.1$x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$