Normalized defining polynomial
\( x^{10} - x^{9} + 4x^{7} - 2x^{6} - 2x^{5} - x^{4} + x^{3} - 2x + 1 \)
Invariants
Degree: | $10$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[4, 3]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: |
\(-91794884831\)
\(\medspace = -\,13^{3}\cdot 347^{3}\)
| sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(12.48\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $13^{1/2}347^{1/2}\approx 67.16397844082793$ | ||
Ramified primes: |
\(13\), \(347\)
| sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{-4511}) \) | ||
$\card{ \Aut(K/\Q) }$: | $1$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{31}a^{9}-\frac{5}{31}a^{8}-\frac{11}{31}a^{7}-\frac{14}{31}a^{6}-\frac{8}{31}a^{5}-\frac{1}{31}a^{4}+\frac{3}{31}a^{3}-\frac{11}{31}a^{2}+\frac{13}{31}a+\frac{8}{31}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $6$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: |
\( -1 \)
(order $2$)
| sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: |
$a$, $\frac{35}{31}a^{9}-\frac{20}{31}a^{8}-\frac{13}{31}a^{7}+\frac{130}{31}a^{6}-\frac{1}{31}a^{5}-\frac{97}{31}a^{4}-\frac{81}{31}a^{3}+\frac{18}{31}a^{2}+\frac{21}{31}a-\frac{30}{31}$, $\frac{2}{31}a^{9}-\frac{10}{31}a^{8}+\frac{9}{31}a^{7}+\frac{3}{31}a^{6}-\frac{16}{31}a^{5}-\frac{2}{31}a^{4}+\frac{6}{31}a^{3}+\frac{71}{31}a^{2}-\frac{36}{31}a-\frac{15}{31}$, $\frac{17}{31}a^{9}-\frac{23}{31}a^{8}-\frac{1}{31}a^{7}+\frac{72}{31}a^{6}-\frac{43}{31}a^{5}-\frac{48}{31}a^{4}-\frac{11}{31}a^{3}+\frac{92}{31}a^{2}+\frac{35}{31}a-\frac{50}{31}$, $\frac{39}{31}a^{9}-\frac{9}{31}a^{8}-\frac{26}{31}a^{7}+\frac{167}{31}a^{6}+\frac{29}{31}a^{5}-\frac{101}{31}a^{4}-\frac{69}{31}a^{3}+\frac{5}{31}a^{2}+\frac{42}{31}a-\frac{91}{31}$, $\frac{39}{31}a^{9}-\frac{40}{31}a^{8}+\frac{5}{31}a^{7}+\frac{136}{31}a^{6}-\frac{64}{31}a^{5}-\frac{70}{31}a^{4}-\frac{100}{31}a^{3}+\frac{67}{31}a^{2}+\frac{11}{31}a-\frac{29}{31}$
| sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 36.1853120565 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{3}\cdot 36.1853120565 \cdot 1}{2\cdot\sqrt{91794884831}}\cr\approx \mathstrut & 0.237002361679 \end{aligned}\]
Galois group
A non-solvable group of order 120 |
The 7 conjugacy class representatives for $S_5$ |
Character table for $S_5$ |
Intermediate fields
The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
Degree 5 sibling: | 5.3.4511.1 |
Degree 6 sibling: | 6.0.91794884831.2 |
Degree 10 sibling: | data not computed |
Degree 12 sibling: | data not computed |
Degree 15 sibling: | data not computed |
Degree 20 siblings: | data not computed |
Degree 24 sibling: | data not computed |
Degree 30 siblings: | data not computed |
Degree 40 sibling: | data not computed |
Minimal sibling: | 5.3.4511.1 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.5.0.1}{5} }^{2}$ | ${\href{/padicField/3.5.0.1}{5} }^{2}$ | ${\href{/padicField/5.5.0.1}{5} }^{2}$ | ${\href{/padicField/7.5.0.1}{5} }^{2}$ | ${\href{/padicField/11.6.0.1}{6} }{,}\,{\href{/padicField/11.3.0.1}{3} }{,}\,{\href{/padicField/11.1.0.1}{1} }$ | R | ${\href{/padicField/17.4.0.1}{4} }^{2}{,}\,{\href{/padicField/17.2.0.1}{2} }$ | ${\href{/padicField/19.3.0.1}{3} }^{3}{,}\,{\href{/padicField/19.1.0.1}{1} }$ | ${\href{/padicField/23.4.0.1}{4} }^{2}{,}\,{\href{/padicField/23.2.0.1}{2} }$ | ${\href{/padicField/29.5.0.1}{5} }^{2}$ | ${\href{/padicField/31.4.0.1}{4} }^{2}{,}\,{\href{/padicField/31.2.0.1}{2} }$ | ${\href{/padicField/37.2.0.1}{2} }^{4}{,}\,{\href{/padicField/37.1.0.1}{1} }^{2}$ | ${\href{/padicField/41.2.0.1}{2} }^{4}{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ | ${\href{/padicField/43.5.0.1}{5} }^{2}$ | ${\href{/padicField/47.3.0.1}{3} }^{3}{,}\,{\href{/padicField/47.1.0.1}{1} }$ | ${\href{/padicField/53.2.0.1}{2} }^{4}{,}\,{\href{/padicField/53.1.0.1}{1} }^{2}$ | ${\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.3.0.1}{3} }{,}\,{\href{/padicField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(13\)
| $\Q_{13}$ | $x + 11$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{13}$ | $x + 11$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
13.2.0.1 | $x^{2} + 12 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
13.4.2.1 | $x^{4} + 284 x^{3} + 21754 x^{2} + 225780 x + 59193$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
\(347\)
| $\Q_{347}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{347}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $4$ | $2$ | $2$ | $2$ |