Normalized defining polynomial
\( x^{10} + 140x^{8} + 4540x^{6} - 24480x^{4} - 232920x^{2} + 56448 \)
Invariants
Degree: | $10$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[4, 3]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: |
\(-272097792000000000000000000\)
\(\medspace = -\,2^{27}\cdot 3^{12}\cdot 5^{18}\)
| sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | \(440.02\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: |
\(2\), \(3\), \(5\)
| sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$\card{ \Aut(K/\Q) }$: | $2$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2}a^{3}$, $\frac{1}{2}a^{4}$, $\frac{1}{6}a^{5}+\frac{1}{6}a^{3}$, $\frac{1}{132}a^{6}-\frac{5}{33}a^{4}-\frac{3}{11}a^{2}+\frac{4}{11}$, $\frac{1}{132}a^{7}+\frac{1}{66}a^{5}-\frac{7}{66}a^{3}+\frac{4}{11}a$, $\frac{1}{9193272}a^{8}-\frac{2221}{2298318}a^{6}+\frac{194329}{2298318}a^{4}-\frac{106866}{383053}a^{2}+\frac{169855}{383053}$, $\frac{1}{257411616}a^{9}+\frac{29531}{9193272}a^{7}-\frac{13991}{5850264}a^{5}-\frac{828844}{8044113}a^{3}-\frac{4287489}{10725484}a$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $6$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: |
\( -1 \)
(order $2$)
| sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: |
$\frac{397}{766106}a^{8}+\frac{59821}{766106}a^{6}+\frac{1215318}{383053}a^{4}+\frac{7419935}{383053}a^{2}+\frac{8503981}{383053}$, $\frac{172042931}{4596636}a^{8}+\frac{23156899391}{4596636}a^{6}+\frac{54667950531}{383053}a^{4}-\frac{646218495661}{383053}a^{2}+\frac{13624168213}{34823}$, $\frac{7416395}{4596636}a^{8}+\frac{229982015}{2298318}a^{6}-\frac{687841481}{2298318}a^{4}-\frac{2120356746}{383053}a^{2}-\frac{1506297491}{383053}$, $\frac{2346988117}{2298318}a^{8}+\frac{658267833785}{4596636}a^{6}+\frac{3577746260405}{766106}a^{4}-\frac{9152248961784}{383053}a^{2}-\frac{93276602013937}{383053}$, $\frac{16\!\cdots\!49}{257411616}a^{9}-\frac{29\!\cdots\!15}{9193272}a^{8}+\frac{84\!\cdots\!19}{9193272}a^{7}-\frac{68\!\cdots\!53}{1532212}a^{6}+\frac{64\!\cdots\!13}{21450968}a^{5}-\frac{33\!\cdots\!79}{2298318}a^{4}-\frac{82\!\cdots\!71}{5362742}a^{3}+\frac{28\!\cdots\!50}{383053}a^{2}-\frac{16\!\cdots\!45}{10725484}a+\frac{26\!\cdots\!76}{34823}$, $\frac{34\!\cdots\!15}{128705808}a^{9}-\frac{35\!\cdots\!59}{4596636}a^{8}+\frac{30\!\cdots\!71}{766106}a^{7}-\frac{17\!\cdots\!35}{1532212}a^{6}+\frac{49\!\cdots\!01}{32176452}a^{5}-\frac{52\!\cdots\!59}{1149159}a^{4}+\frac{37\!\cdots\!31}{5362742}a^{3}-\frac{77\!\cdots\!14}{383053}a^{2}-\frac{92\!\cdots\!23}{5362742}a+\frac{19\!\cdots\!83}{383053}$
| sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 51233907436.9 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
$C_2 \wr S_5$ (as 10T39):
A non-solvable group of order 3840 |
The 36 conjugacy class representatives for $C_2 \wr S_5$ |
Character table for $C_2 \wr S_5$ is not computed |
Intermediate fields
5.5.364500000000.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 10 sibling: | data not computed |
Degree 20 siblings: | data not computed |
Degree 30 siblings: | data not computed |
Degree 32 siblings: | data not computed |
Degree 40 siblings: | data not computed |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | R | ${\href{/padicField/7.2.0.1}{2} }^{3}{,}\,{\href{/padicField/7.1.0.1}{1} }^{4}$ | ${\href{/padicField/11.4.0.1}{4} }^{2}{,}\,{\href{/padicField/11.1.0.1}{1} }^{2}$ | ${\href{/padicField/13.8.0.1}{8} }{,}\,{\href{/padicField/13.1.0.1}{1} }^{2}$ | ${\href{/padicField/17.4.0.1}{4} }{,}\,{\href{/padicField/17.2.0.1}{2} }{,}\,{\href{/padicField/17.1.0.1}{1} }^{4}$ | ${\href{/padicField/19.6.0.1}{6} }{,}\,{\href{/padicField/19.2.0.1}{2} }{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ | ${\href{/padicField/23.4.0.1}{4} }{,}\,{\href{/padicField/23.3.0.1}{3} }^{2}$ | ${\href{/padicField/29.10.0.1}{10} }$ | ${\href{/padicField/31.3.0.1}{3} }^{2}{,}\,{\href{/padicField/31.2.0.1}{2} }{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ | ${\href{/padicField/37.4.0.1}{4} }{,}\,{\href{/padicField/37.3.0.1}{3} }^{2}$ | ${\href{/padicField/41.6.0.1}{6} }{,}\,{\href{/padicField/41.2.0.1}{2} }{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ | ${\href{/padicField/43.6.0.1}{6} }{,}\,{\href{/padicField/43.4.0.1}{4} }$ | ${\href{/padicField/47.4.0.1}{4} }{,}\,{\href{/padicField/47.3.0.1}{3} }^{2}$ | ${\href{/padicField/53.6.0.1}{6} }{,}\,{\href{/padicField/53.2.0.1}{2} }^{2}$ | ${\href{/padicField/59.5.0.1}{5} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ |
2.8.25.47 | $x^{8} + 6 x^{4} + 12 x^{2} + 10$ | $8$ | $1$ | $25$ | $C_2 \wr C_2\wr C_2$ | $[2, 2, 3, 7/2, 4, 17/4]^{2}$ | |
\(3\)
| 3.3.5.2 | $x^{3} + 21$ | $3$ | $1$ | $5$ | $S_3$ | $[5/2]_{2}$ |
3.3.5.2 | $x^{3} + 21$ | $3$ | $1$ | $5$ | $S_3$ | $[5/2]_{2}$ | |
3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
\(5\)
| 5.10.18.5 | $x^{10} + 10 x^{8} + 40 x^{6} + 85 x^{5} + 80 x^{4} - 75 x^{3} + 80 x^{2} + 75 x + 57$ | $5$ | $2$ | $18$ | $F_{5}\times C_2$ | $[9/4]_{4}^{2}$ |