Properties

Label 10.4.196073702927424.1
Degree $10$
Signature $[4, 3]$
Discriminant $-1.961\times 10^{14}$
Root discriminant \(26.87\)
Ramified primes $2,3,7$
Class number $2$
Class group [2]
Galois group $S_{6}$ (as 10T32)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^10 - 2*x^9 + 6*x^8 - 6*x^7 - 21*x^6 + 42*x^5 - 154*x^4 + 116*x^3 - 183*x^2 - 32*x + 4)
 
gp: K = bnfinit(y^10 - 2*y^9 + 6*y^8 - 6*y^7 - 21*y^6 + 42*y^5 - 154*y^4 + 116*y^3 - 183*y^2 - 32*y + 4, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^10 - 2*x^9 + 6*x^8 - 6*x^7 - 21*x^6 + 42*x^5 - 154*x^4 + 116*x^3 - 183*x^2 - 32*x + 4);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^10 - 2*x^9 + 6*x^8 - 6*x^7 - 21*x^6 + 42*x^5 - 154*x^4 + 116*x^3 - 183*x^2 - 32*x + 4)
 

\( x^{10} - 2x^{9} + 6x^{8} - 6x^{7} - 21x^{6} + 42x^{5} - 154x^{4} + 116x^{3} - 183x^{2} - 32x + 4 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $10$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[4, 3]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-196073702927424\) \(\medspace = -\,2^{6}\cdot 3^{12}\cdot 7^{8}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(26.87\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2\cdot 3^{4/3}7^{4/5}\approx 41.045930044873074$
Ramified primes:   \(2\), \(3\), \(7\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-1}) \)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{14}a^{5}+\frac{3}{7}a^{4}-\frac{1}{14}a^{3}-\frac{2}{7}a^{2}-\frac{1}{14}a+\frac{1}{7}$, $\frac{1}{14}a^{6}+\frac{5}{14}a^{4}+\frac{1}{7}a^{3}-\frac{5}{14}a^{2}-\frac{3}{7}a+\frac{1}{7}$, $\frac{1}{14}a^{7}-\frac{1}{2}a+\frac{2}{7}$, $\frac{1}{28}a^{8}-\frac{1}{28}a^{7}-\frac{1}{28}a^{5}-\frac{3}{14}a^{4}+\frac{1}{28}a^{3}-\frac{3}{28}a^{2}+\frac{3}{7}a+\frac{2}{7}$, $\frac{1}{532}a^{9}+\frac{1}{133}a^{8}+\frac{11}{532}a^{7}+\frac{3}{532}a^{6}-\frac{3}{532}a^{5}-\frac{185}{532}a^{4}+\frac{71}{266}a^{3}+\frac{113}{532}a^{2}-\frac{33}{133}a+\frac{60}{133}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

$C_{2}$, which has order $2$

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $6$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{3}{532}a^{9}-\frac{13}{266}a^{8}+\frac{33}{532}a^{7}-\frac{29}{532}a^{6}-\frac{123}{532}a^{5}+\frac{699}{532}a^{4}-\frac{150}{133}a^{3}+\frac{719}{532}a^{2}+\frac{429}{266}a-\frac{29}{133}$, $\frac{29}{532}a^{9}-\frac{55}{532}a^{8}+\frac{37}{133}a^{7}-\frac{141}{532}a^{6}-\frac{169}{133}a^{5}+\frac{1133}{532}a^{4}-\frac{3729}{532}a^{3}+\frac{1325}{266}a^{2}-\frac{249}{38}a-\frac{236}{133}$, $\frac{13}{532}a^{9}-\frac{6}{133}a^{8}+\frac{29}{532}a^{7}-\frac{37}{532}a^{6}-\frac{381}{532}a^{5}+\frac{69}{76}a^{4}-\frac{156}{133}a^{3}+\frac{1089}{532}a^{2}+\frac{160}{133}a+\frac{58}{133}$, $\frac{45}{532}a^{9}-\frac{43}{266}a^{8}+\frac{267}{532}a^{7}-\frac{35}{76}a^{6}-\frac{971}{532}a^{5}+\frac{1783}{532}a^{4}-\frac{3417}{266}a^{3}+\frac{4743}{532}a^{2}-\frac{2036}{133}a-\frac{530}{133}$, $\frac{4}{133}a^{9}-\frac{3}{133}a^{8}+\frac{31}{266}a^{7}-\frac{1}{19}a^{6}-\frac{88}{133}a^{5}+\frac{39}{133}a^{4}-\frac{458}{133}a^{3}+\frac{53}{133}a^{2}-\frac{961}{266}a-\frac{142}{133}$, $\frac{11}{532}a^{9}-\frac{8}{133}a^{8}+\frac{83}{532}a^{7}-\frac{81}{532}a^{6}-\frac{261}{532}a^{5}+\frac{815}{532}a^{4}-\frac{1081}{266}a^{3}+\frac{2193}{532}a^{2}-\frac{1353}{266}a-\frac{81}{133}$ Copy content Toggle raw display
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 4651.46956596 \)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{3}\cdot 4651.46956596 \cdot 2}{2\cdot\sqrt{196073702927424}}\cr\approx \mathstrut & 1.31837845189 \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^10 - 2*x^9 + 6*x^8 - 6*x^7 - 21*x^6 + 42*x^5 - 154*x^4 + 116*x^3 - 183*x^2 - 32*x + 4)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^10 - 2*x^9 + 6*x^8 - 6*x^7 - 21*x^6 + 42*x^5 - 154*x^4 + 116*x^3 - 183*x^2 - 32*x + 4, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^10 - 2*x^9 + 6*x^8 - 6*x^7 - 21*x^6 + 42*x^5 - 154*x^4 + 116*x^3 - 183*x^2 - 32*x + 4);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^10 - 2*x^9 + 6*x^8 - 6*x^7 - 21*x^6 + 42*x^5 - 154*x^4 + 116*x^3 - 183*x^2 - 32*x + 4);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$S_6$ (as 10T32):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 720
The 11 conjugacy class representatives for $S_{6}$
Character table for $S_{6}$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.
sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 6 siblings: 6.0.12446784.1, 6.4.63011844.2
Degree 12 siblings: deg 12, deg 12
Degree 15 siblings: deg 15, deg 15
Degree 20 siblings: deg 20, deg 20, 20.0.9841893626795960030057286598656.1
Degree 30 siblings: data not computed
Degree 36 sibling: data not computed
Degree 40 siblings: data not computed
Degree 45 sibling: data not computed
Minimal sibling: 6.0.12446784.1

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R R ${\href{/padicField/5.4.0.1}{4} }^{2}{,}\,{\href{/padicField/5.1.0.1}{1} }^{2}$ R ${\href{/padicField/11.6.0.1}{6} }{,}\,{\href{/padicField/11.3.0.1}{3} }{,}\,{\href{/padicField/11.1.0.1}{1} }$ ${\href{/padicField/13.4.0.1}{4} }^{2}{,}\,{\href{/padicField/13.1.0.1}{1} }^{2}$ ${\href{/padicField/17.5.0.1}{5} }^{2}$ ${\href{/padicField/19.4.0.1}{4} }^{2}{,}\,{\href{/padicField/19.2.0.1}{2} }$ ${\href{/padicField/23.6.0.1}{6} }{,}\,{\href{/padicField/23.3.0.1}{3} }{,}\,{\href{/padicField/23.1.0.1}{1} }$ ${\href{/padicField/29.5.0.1}{5} }^{2}$ ${\href{/padicField/31.6.0.1}{6} }{,}\,{\href{/padicField/31.3.0.1}{3} }{,}\,{\href{/padicField/31.1.0.1}{1} }$ ${\href{/padicField/37.5.0.1}{5} }^{2}$ ${\href{/padicField/41.3.0.1}{3} }^{3}{,}\,{\href{/padicField/41.1.0.1}{1} }$ ${\href{/padicField/43.6.0.1}{6} }{,}\,{\href{/padicField/43.3.0.1}{3} }{,}\,{\href{/padicField/43.1.0.1}{1} }$ ${\href{/padicField/47.4.0.1}{4} }^{2}{,}\,{\href{/padicField/47.2.0.1}{2} }$ ${\href{/padicField/53.5.0.1}{5} }^{2}$ ${\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.3.0.1}{3} }{,}\,{\href{/padicField/59.1.0.1}{1} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display 2.2.2.1$x^{2} + 2 x + 2$$2$$1$$2$$C_2$$[2]$
2.4.0.1$x^{4} + x + 1$$1$$4$$0$$C_4$$[\ ]^{4}$
2.4.4.2$x^{4} + 4 x^{3} + 4 x^{2} + 12$$2$$2$$4$$C_4$$[2]^{2}$
\(3\) Copy content Toggle raw display $\Q_{3}$$x + 1$$1$$1$$0$Trivial$[\ ]$
3.9.12.16$x^{9} + 9 x^{8} + 27 x^{7} + 36 x^{6} + 54 x^{5} + 81 x^{4} + 675 x^{3} + 2025 x^{2} - 3861$$3$$3$$12$$S_3\times C_3$$[2]^{6}$
\(7\) Copy content Toggle raw display 7.10.8.1$x^{10} + 30 x^{9} + 375 x^{8} + 2520 x^{7} + 9810 x^{6} + 22370 x^{5} + 29640 x^{4} + 24780 x^{3} + 21465 x^{2} + 33300 x + 33934$$5$$2$$8$$F_5$$[\ ]_{5}^{4}$