Properties

Label 10.4.13636502136971.1
Degree $10$
Signature $[4, 3]$
Discriminant $-1.364\times 10^{13}$
Root discriminant \(20.58\)
Ramified primes $7,3413$
Class number $1$
Class group trivial
Galois group $S_5$ (as 10T13)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^10 - 3*x^9 - 2*x^8 + 24*x^7 - 28*x^6 - 21*x^5 + 47*x^4 - 2*x^3 - 28*x^2 - 8*x + 16)
 
gp: K = bnfinit(y^10 - 3*y^9 - 2*y^8 + 24*y^7 - 28*y^6 - 21*y^5 + 47*y^4 - 2*y^3 - 28*y^2 - 8*y + 16, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^10 - 3*x^9 - 2*x^8 + 24*x^7 - 28*x^6 - 21*x^5 + 47*x^4 - 2*x^3 - 28*x^2 - 8*x + 16);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^10 - 3*x^9 - 2*x^8 + 24*x^7 - 28*x^6 - 21*x^5 + 47*x^4 - 2*x^3 - 28*x^2 - 8*x + 16)
 

\( x^{10} - 3x^{9} - 2x^{8} + 24x^{7} - 28x^{6} - 21x^{5} + 47x^{4} - 2x^{3} - 28x^{2} - 8x + 16 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $10$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[4, 3]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-13636502136971\) \(\medspace = -\,7^{3}\cdot 3413^{3}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(20.58\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $7^{1/2}3413^{1/2}\approx 154.56713751635564$
Ramified primes:   \(7\), \(3413\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-23891}) \)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2}a^{6}-\frac{1}{2}a$, $\frac{1}{4}a^{7}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}+\frac{1}{4}a^{2}-\frac{1}{2}a$, $\frac{1}{8}a^{8}-\frac{1}{4}a^{6}+\frac{1}{4}a^{5}+\frac{1}{4}a^{4}+\frac{1}{8}a^{3}+\frac{1}{4}a^{2}-\frac{1}{2}a$, $\frac{1}{8488}a^{9}+\frac{31}{1061}a^{8}+\frac{177}{2122}a^{7}+\frac{803}{4244}a^{6}+\frac{2071}{4244}a^{5}+\frac{4085}{8488}a^{4}-\frac{833}{4244}a^{3}-\frac{67}{4244}a^{2}-\frac{229}{1061}a-\frac{186}{1061}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $6$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{351}{4244}a^{9}-\frac{969}{8488}a^{8}-\frac{472}{1061}a^{7}+\frac{6681}{4244}a^{6}+\frac{1333}{4244}a^{5}-\frac{7215}{2122}a^{4}+\frac{13483}{8488}a^{3}+\frac{11321}{4244}a^{2}-\frac{1608}{1061}a-\frac{1130}{1061}$, $\frac{221}{8488}a^{9}-\frac{91}{2122}a^{8}-\frac{70}{1061}a^{7}+\frac{1337}{4244}a^{6}-\frac{661}{4244}a^{5}+\frac{3057}{8488}a^{4}-\frac{3723}{4244}a^{3}+\frac{47}{4244}a^{2}-\frac{423}{2122}a+\frac{273}{1061}$, $\frac{33}{8488}a^{9}-\frac{38}{1061}a^{8}+\frac{11}{4244}a^{7}+\frac{1035}{4244}a^{6}-\frac{1683}{4244}a^{5}-\frac{5247}{8488}a^{4}+\frac{4341}{4244}a^{3}+\frac{1547}{2122}a^{2}-\frac{1321}{2122}a-\frac{833}{1061}$, $\frac{179}{8488}a^{9}-\frac{85}{4244}a^{8}-\frac{147}{2122}a^{7}+\frac{1563}{4244}a^{6}-\frac{641}{4244}a^{5}-\frac{2997}{8488}a^{4}+\frac{1715}{1061}a^{3}-\frac{1383}{4244}a^{2}-\frac{1734}{1061}a-\frac{1464}{1061}$, $\frac{247}{8488}a^{9}-\frac{1343}{8488}a^{8}+\frac{109}{1061}a^{7}+\frac{2089}{2122}a^{6}-\frac{4707}{2122}a^{5}+\frac{1045}{8488}a^{4}+\frac{26691}{8488}a^{3}-\frac{317}{2122}a^{2}-\frac{330}{1061}a-\frac{319}{1061}$, $\frac{1489}{8488}a^{9}-\frac{525}{1061}a^{8}-\frac{318}{1061}a^{7}+\frac{15835}{4244}a^{6}-\frac{18645}{4244}a^{5}-\frac{11819}{8488}a^{4}+\frac{15887}{4244}a^{3}-\frac{29}{4244}a^{2}-\frac{1461}{1061}a-\frac{2155}{1061}$ Copy content Toggle raw display
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 627.63937747 \)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{3}\cdot 627.63937747 \cdot 1}{2\cdot\sqrt{13636502136971}}\cr\approx \mathstrut & 0.33727820867 \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^10 - 3*x^9 - 2*x^8 + 24*x^7 - 28*x^6 - 21*x^5 + 47*x^4 - 2*x^3 - 28*x^2 - 8*x + 16)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^10 - 3*x^9 - 2*x^8 + 24*x^7 - 28*x^6 - 21*x^5 + 47*x^4 - 2*x^3 - 28*x^2 - 8*x + 16, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^10 - 3*x^9 - 2*x^8 + 24*x^7 - 28*x^6 - 21*x^5 + 47*x^4 - 2*x^3 - 28*x^2 - 8*x + 16);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^10 - 3*x^9 - 2*x^8 + 24*x^7 - 28*x^6 - 21*x^5 + 47*x^4 - 2*x^3 - 28*x^2 - 8*x + 16);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$S_5$ (as 10T13):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 120
The 7 conjugacy class representatives for $S_5$
Character table for $S_5$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.
sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 5 sibling: 5.3.23891.1
Degree 6 sibling: 6.0.13636502136971.1
Degree 10 sibling: data not computed
Degree 12 sibling: data not computed
Degree 15 sibling: data not computed
Degree 20 siblings: data not computed
Degree 24 sibling: data not computed
Degree 30 siblings: data not computed
Degree 40 sibling: data not computed
Minimal sibling: 5.3.23891.1

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.4.0.1}{4} }^{2}{,}\,{\href{/padicField/2.2.0.1}{2} }$ ${\href{/padicField/3.5.0.1}{5} }^{2}$ ${\href{/padicField/5.5.0.1}{5} }^{2}$ R ${\href{/padicField/11.5.0.1}{5} }^{2}$ ${\href{/padicField/13.2.0.1}{2} }^{4}{,}\,{\href{/padicField/13.1.0.1}{1} }^{2}$ ${\href{/padicField/17.4.0.1}{4} }^{2}{,}\,{\href{/padicField/17.2.0.1}{2} }$ ${\href{/padicField/19.5.0.1}{5} }^{2}$ ${\href{/padicField/23.5.0.1}{5} }^{2}$ ${\href{/padicField/29.2.0.1}{2} }^{4}{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ ${\href{/padicField/31.5.0.1}{5} }^{2}$ ${\href{/padicField/37.3.0.1}{3} }^{3}{,}\,{\href{/padicField/37.1.0.1}{1} }$ ${\href{/padicField/41.4.0.1}{4} }^{2}{,}\,{\href{/padicField/41.2.0.1}{2} }$ ${\href{/padicField/43.5.0.1}{5} }^{2}$ ${\href{/padicField/47.5.0.1}{5} }^{2}$ ${\href{/padicField/53.4.0.1}{4} }^{2}{,}\,{\href{/padicField/53.2.0.1}{2} }$ ${\href{/padicField/59.2.0.1}{2} }^{4}{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(7\) Copy content Toggle raw display $\Q_{7}$$x + 4$$1$$1$$0$Trivial$[\ ]$
7.3.0.1$x^{3} + 6 x^{2} + 4$$1$$3$$0$$C_3$$[\ ]^{3}$
7.6.3.2$x^{6} + 12 x^{5} + 57 x^{4} + 176 x^{3} + 699 x^{2} + 420 x + 1787$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
\(3413\) Copy content Toggle raw display $\Q_{3413}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $3$$1$$3$$0$$C_3$$[\ ]^{3}$
Deg $6$$2$$3$$3$