Properties

Label 10.4.1127136889143.1
Degree $10$
Signature $[4, 3]$
Discriminant $-1.127\times 10^{12}$
Root discriminant \(16.04\)
Ramified primes $3,3469$
Class number $1$
Class group trivial
Galois group $S_5$ (as 10T13)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^10 - 3*x^9 - 3*x^8 + 20*x^7 + x^6 - 31*x^5 + 14*x^4 + 15*x^3 - 10*x^2 + 1)
 
gp: K = bnfinit(y^10 - 3*y^9 - 3*y^8 + 20*y^7 + y^6 - 31*y^5 + 14*y^4 + 15*y^3 - 10*y^2 + 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^10 - 3*x^9 - 3*x^8 + 20*x^7 + x^6 - 31*x^5 + 14*x^4 + 15*x^3 - 10*x^2 + 1);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^10 - 3*x^9 - 3*x^8 + 20*x^7 + x^6 - 31*x^5 + 14*x^4 + 15*x^3 - 10*x^2 + 1)
 

\( x^{10} - 3x^{9} - 3x^{8} + 20x^{7} + x^{6} - 31x^{5} + 14x^{4} + 15x^{3} - 10x^{2} + 1 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $10$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[4, 3]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-1127136889143\) \(\medspace = -\,3^{3}\cdot 3469^{3}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(16.04\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $3^{1/2}3469^{1/2}\approx 102.01470482239313$
Ramified primes:   \(3\), \(3469\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-10407}) \)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{337}a^{9}-\frac{41}{337}a^{8}-\frac{130}{337}a^{7}-\frac{95}{337}a^{6}-\frac{96}{337}a^{5}-\frac{90}{337}a^{4}+\frac{64}{337}a^{3}-\frac{58}{337}a^{2}-\frac{165}{337}a-\frac{133}{337}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $6$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $a^{9}-3a^{8}-3a^{7}+20a^{6}+a^{5}-31a^{4}+14a^{3}+15a^{2}-10a$, $\frac{158}{337}a^{9}-\frac{412}{337}a^{8}-\frac{657}{337}a^{7}+\frac{2851}{337}a^{6}+\frac{1682}{337}a^{5}-\frac{4447}{337}a^{4}-\frac{1346}{337}a^{3}+\frac{2294}{337}a^{2}+\frac{216}{337}a-\frac{457}{337}$, $\frac{105}{337}a^{9}-\frac{261}{337}a^{8}-\frac{507}{337}a^{7}+\frac{2157}{337}a^{6}+\frac{704}{337}a^{5}-\frac{3384}{337}a^{4}+\frac{1665}{337}a^{3}+\frac{987}{337}a^{2}-\frac{1149}{337}a+\frac{189}{337}$, $\frac{105}{337}a^{9}-\frac{261}{337}a^{8}-\frac{507}{337}a^{7}+\frac{2157}{337}a^{6}+\frac{704}{337}a^{5}-\frac{3384}{337}a^{4}+\frac{1665}{337}a^{3}+\frac{987}{337}a^{2}-\frac{1149}{337}a+\frac{526}{337}$, $\frac{84}{337}a^{9}-\frac{411}{337}a^{8}+\frac{201}{337}a^{7}+\frac{2130}{337}a^{6}-\frac{2672}{337}a^{5}-\frac{3179}{337}a^{4}+\frac{4365}{337}a^{3}+\frac{183}{337}a^{2}-\frac{1728}{337}a+\frac{623}{337}$, $\frac{349}{337}a^{9}-\frac{829}{337}a^{8}-\frac{1560}{337}a^{7}+\frac{5937}{337}a^{6}+\frac{4240}{337}a^{5}-\frac{8157}{337}a^{4}-\frac{917}{337}a^{3}+\frac{5033}{337}a^{2}-\frac{295}{337}a-\frac{585}{337}$ Copy content Toggle raw display
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 212.311693356 \)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{4}\cdot(2\pi)^{3}\cdot 212.311693356 \cdot 1}{2\cdot\sqrt{1127136889143}}\cr\approx \mathstrut & 0.396839756436 \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^10 - 3*x^9 - 3*x^8 + 20*x^7 + x^6 - 31*x^5 + 14*x^4 + 15*x^3 - 10*x^2 + 1)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^10 - 3*x^9 - 3*x^8 + 20*x^7 + x^6 - 31*x^5 + 14*x^4 + 15*x^3 - 10*x^2 + 1, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^10 - 3*x^9 - 3*x^8 + 20*x^7 + x^6 - 31*x^5 + 14*x^4 + 15*x^3 - 10*x^2 + 1);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^10 - 3*x^9 - 3*x^8 + 20*x^7 + x^6 - 31*x^5 + 14*x^4 + 15*x^3 - 10*x^2 + 1);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$S_5$ (as 10T13):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A non-solvable group of order 120
The 7 conjugacy class representatives for $S_5$
Character table for $S_5$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.
sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 5 sibling: 5.3.10407.1
Degree 6 sibling: 6.0.1127136889143.2
Degree 10 sibling: data not computed
Degree 12 sibling: data not computed
Degree 15 sibling: data not computed
Degree 20 siblings: data not computed
Degree 24 sibling: data not computed
Degree 30 siblings: data not computed
Degree 40 sibling: data not computed
Minimal sibling: 5.3.10407.1

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.5.0.1}{5} }^{2}$ R ${\href{/padicField/5.6.0.1}{6} }{,}\,{\href{/padicField/5.3.0.1}{3} }{,}\,{\href{/padicField/5.1.0.1}{1} }$ ${\href{/padicField/7.5.0.1}{5} }^{2}$ ${\href{/padicField/11.4.0.1}{4} }^{2}{,}\,{\href{/padicField/11.2.0.1}{2} }$ ${\href{/padicField/13.6.0.1}{6} }{,}\,{\href{/padicField/13.3.0.1}{3} }{,}\,{\href{/padicField/13.1.0.1}{1} }$ ${\href{/padicField/17.6.0.1}{6} }{,}\,{\href{/padicField/17.3.0.1}{3} }{,}\,{\href{/padicField/17.1.0.1}{1} }$ ${\href{/padicField/19.5.0.1}{5} }^{2}$ ${\href{/padicField/23.3.0.1}{3} }^{3}{,}\,{\href{/padicField/23.1.0.1}{1} }$ ${\href{/padicField/29.2.0.1}{2} }^{4}{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ ${\href{/padicField/31.3.0.1}{3} }^{3}{,}\,{\href{/padicField/31.1.0.1}{1} }$ ${\href{/padicField/37.5.0.1}{5} }^{2}$ ${\href{/padicField/41.6.0.1}{6} }{,}\,{\href{/padicField/41.3.0.1}{3} }{,}\,{\href{/padicField/41.1.0.1}{1} }$ ${\href{/padicField/43.6.0.1}{6} }{,}\,{\href{/padicField/43.3.0.1}{3} }{,}\,{\href{/padicField/43.1.0.1}{1} }$ ${\href{/padicField/47.5.0.1}{5} }^{2}$ ${\href{/padicField/53.2.0.1}{2} }^{3}{,}\,{\href{/padicField/53.1.0.1}{1} }^{4}$ ${\href{/padicField/59.2.0.1}{2} }^{4}{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(3\) Copy content Toggle raw display $\Q_{3}$$x + 1$$1$$1$$0$Trivial$[\ ]$
3.3.0.1$x^{3} + 2 x + 1$$1$$3$$0$$C_3$$[\ ]^{3}$
3.6.3.2$x^{6} + 13 x^{4} + 2 x^{3} + 31 x^{2} - 14 x + 4$$2$$3$$3$$C_6$$[\ ]_{2}^{3}$
\(3469\) Copy content Toggle raw display $\Q_{3469}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{3469}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{3469}$$x$$1$$1$$0$Trivial$[\ ]$
$\Q_{3469}$$x$$1$$1$$0$Trivial$[\ ]$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$
Deg $2$$2$$1$$1$$C_2$$[\ ]_{2}$