Normalized defining polynomial
\( x^{10} - 2x^{9} + 3x^{8} - 2x^{7} + x^{6} + 3x^{5} - 11x^{4} + 14x^{3} - 12x^{2} + 5x - 1 \)
Invariants
| Degree: | $10$ |
| |
| Signature: | $[2, 4]$ |
| |
| Discriminant: |
\(913874993\)
\(\medspace = 353\cdot 1609^{2}\)
|
| |
| Root discriminant: | \(7.87\) |
| |
| Galois root discriminant: | $353^{1/2}1609^{1/2}\approx 753.6424881865406$ | ||
| Ramified primes: |
\(353\), \(1609\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{353}) \) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{7}a^{8}-\frac{1}{7}a^{7}+\frac{1}{7}a^{4}-\frac{3}{7}a^{3}-\frac{2}{7}a^{2}-\frac{3}{7}a+\frac{3}{7}$, $\frac{1}{49}a^{9}+\frac{2}{49}a^{8}+\frac{11}{49}a^{7}-\frac{1}{7}a^{6}+\frac{22}{49}a^{5}-\frac{1}{7}a^{4}+\frac{10}{49}a^{3}+\frac{5}{49}a^{2}+\frac{8}{49}a-\frac{12}{49}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
| Rank: | $5$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{43}{49}a^{9}-\frac{54}{49}a^{8}+\frac{74}{49}a^{7}-\frac{1}{7}a^{6}+\frac{15}{49}a^{5}+3a^{4}-\frac{375}{49}a^{3}+\frac{299}{49}a^{2}-\frac{167}{49}a-\frac{5}{49}$, $\frac{16}{49}a^{9}-\frac{17}{49}a^{8}+\frac{29}{49}a^{7}-\frac{2}{7}a^{6}+\frac{9}{49}a^{5}+\frac{5}{7}a^{4}-\frac{134}{49}a^{3}+\frac{80}{49}a^{2}-\frac{117}{49}a+\frac{53}{49}$, $\frac{27}{49}a^{9}-\frac{23}{49}a^{8}+\frac{31}{49}a^{7}+\frac{1}{7}a^{6}+\frac{6}{49}a^{5}+\frac{11}{7}a^{4}-\frac{185}{49}a^{3}+\frac{93}{49}a^{2}-\frac{43}{49}a-\frac{16}{49}$, $\frac{48}{49}a^{9}-\frac{100}{49}a^{8}+\frac{136}{49}a^{7}-\frac{13}{7}a^{6}+\frac{27}{49}a^{5}+\frac{22}{7}a^{4}-\frac{549}{49}a^{3}+\frac{681}{49}a^{2}-\frac{498}{49}a+\frac{208}{49}$, $\frac{16}{49}a^{9}-\frac{59}{49}a^{8}+\frac{71}{49}a^{7}-\frac{9}{7}a^{6}+\frac{9}{49}a^{5}+\frac{6}{7}a^{4}-\frac{253}{49}a^{3}+\frac{409}{49}a^{2}-\frac{236}{49}a+\frac{123}{49}$
|
| |
| Regulator: | \( 1.78751997456 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{2}\cdot(2\pi)^{4}\cdot 1.78751997456 \cdot 1}{2\cdot\sqrt{913874993}}\cr\approx \mathstrut & 0.184313427693 \end{aligned}\]
Galois group
$C_2\wr S_5$ (as 10T39):
| A non-solvable group of order 3840 |
| The 36 conjugacy class representatives for $C_2 \wr S_5$ |
| Character table for $C_2 \wr S_5$ |
Intermediate fields
| 5.1.1609.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 sibling: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.5.0.1}{5} }^{2}$ | ${\href{/padicField/3.10.0.1}{10} }$ | ${\href{/padicField/5.10.0.1}{10} }$ | ${\href{/padicField/7.4.0.1}{4} }{,}\,{\href{/padicField/7.3.0.1}{3} }^{2}$ | ${\href{/padicField/11.3.0.1}{3} }^{2}{,}\,{\href{/padicField/11.2.0.1}{2} }^{2}$ | ${\href{/padicField/13.6.0.1}{6} }{,}\,{\href{/padicField/13.2.0.1}{2} }^{2}$ | ${\href{/padicField/17.8.0.1}{8} }{,}\,{\href{/padicField/17.2.0.1}{2} }$ | ${\href{/padicField/19.6.0.1}{6} }{,}\,{\href{/padicField/19.4.0.1}{4} }$ | ${\href{/padicField/23.4.0.1}{4} }^{2}{,}\,{\href{/padicField/23.1.0.1}{1} }^{2}$ | ${\href{/padicField/29.8.0.1}{8} }{,}\,{\href{/padicField/29.2.0.1}{2} }$ | ${\href{/padicField/31.2.0.1}{2} }^{5}$ | ${\href{/padicField/37.8.0.1}{8} }{,}\,{\href{/padicField/37.1.0.1}{1} }^{2}$ | ${\href{/padicField/41.5.0.1}{5} }^{2}$ | ${\href{/padicField/43.4.0.1}{4} }^{2}{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ | ${\href{/padicField/47.4.0.1}{4} }^{2}{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ | ${\href{/padicField/53.4.0.1}{4} }^{2}{,}\,{\href{/padicField/53.2.0.1}{2} }$ | ${\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.1.0.1}{1} }^{4}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(353\)
| $\Q_{353}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{353}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $3$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ | ||
| Deg $3$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ | ||
|
\(1609\)
| $\Q_{1609}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{1609}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |