Normalized defining polynomial
\( x^{10} - 950 x^{8} + 361000 x^{6} - 633864 x^{5} - 68590000 x^{4} - 1204341600 x^{3} + 6516050000 x^{2} - 114412452000 x - 147164007376 \)
Invariants
| Degree: | $10$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(822287695938095069212060016640000000=2^{19}\cdot 3^{8}\cdot 5^{7}\cdot 7^{8}\cdot 11^{8}\cdot 19^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $3903.93$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7, 11, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{70} a^{4} + \frac{1}{10} a^{3} - \frac{8}{35} a^{2} + \frac{2}{5} a - \frac{17}{35}$, $\frac{1}{140} a^{5} - \frac{3}{14} a^{3} - \frac{1}{7} a + \frac{1}{5}$, $\frac{1}{980} a^{6} + \frac{1}{245} a^{4} + \frac{1}{10} a^{3} + \frac{34}{245} a^{2} + \frac{26}{245}$, $\frac{1}{4900} a^{7} + \frac{1}{4900} a^{6} + \frac{1}{1225} a^{5} - \frac{1}{490} a^{4} + \frac{43}{490} a^{3} + \frac{482}{1225} a^{2} + \frac{222}{1225} a - \frac{247}{1225}$, $\frac{1}{68600} a^{8} - \frac{4}{8575} a^{6} + \frac{1}{350} a^{5} - \frac{2}{343} a^{4} + \frac{33}{350} a^{3} - \frac{71}{343} a^{2} - \frac{3}{175} a - \frac{3359}{8575}$, $\frac{1}{6880418188167727353231940600} a^{9} - \frac{14806458430259643949327}{3440209094083863676615970300} a^{8} + \frac{1949310391478077516929}{68804181881677273532319406} a^{7} - \frac{148379989032544779425383}{860052273520965919153992575} a^{6} - \frac{2518588172696468000937082}{860052273520965919153992575} a^{5} + \frac{6718865401241992650100677}{1720104547041931838307985150} a^{4} + \frac{285822267788379093062881827}{1720104547041931838307985150} a^{3} + \frac{78472476734940506709713274}{172010454704193183830798515} a^{2} + \frac{219274415297819586267934771}{860052273520965919153992575} a - \frac{395777036258310596381702121}{860052273520965919153992575}$
Class group and class number
$C_{10}\times C_{10}\times C_{12880}$, which has order $1288000$ (assuming GRH)
Unit group
| Rank: | $5$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 370200813.58666074 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times F_5$ (as 10T5):
| A solvable group of order 40 |
| The 10 conjugacy class representatives for $F_{5}\times C_2$ |
| Character table for $F_{5}\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{190}) \), 5.1.5694792642000.6 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 10 sibling: | data not computed |
| Degree 20 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.10.0.1}{10} }$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{5}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.19.33 | $x^{10} - 6 x^{4} + 4 x^{2} - 14$ | $10$ | $1$ | $19$ | $F_{5}\times C_2$ | $[3]_{5}^{4}$ |
| $3$ | 3.5.4.1 | $x^{5} - 3$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 3.5.4.1 | $x^{5} - 3$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| $5$ | 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $7$ | 7.5.4.1 | $x^{5} - 7$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 7.5.4.1 | $x^{5} - 7$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| $11$ | 11.5.4.3 | $x^{5} + 33$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 11.5.4.3 | $x^{5} + 33$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| $19$ | 19.2.1.2 | $x^{2} + 76$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |